

3237

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2016

DECE—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Convert the following hex numbers into decimal:
 - (a) $2B8_{16}$
 - (b) 1C₁₆
 - (c) $3CA_{16}$
- 2. Draw the symbols of NAND, NOR and Ex-OR gates.
- 3. List different digital logic families.
- **4.** Realize a half-adder circuit using NOR gates only.
- **5.** Draw the logic circuit of 3 8 decoder.
- **6.** Draw a level clocked *T* flip-flop.
- 7. Draw a four-bit shift left register.

- **8.** State the need for preset and clear inputs in flip-flops.
- **9.** Draw the circuit of A/D converter using counter method.
- 10. Write any three differences between ROM and RAM.

PART—B

 $10 \times 5 = 50$

5

4

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Use Karnaugh map to simplify the following boolean expression:

 $Y \overline{A}\overline{B}\overline{C} A\overline{B}\overline{C} \overline{A}B\overline{C} AB\overline{C}$

(b) Write boolen expressions of product of max. terms from the following truth table:

	Inputs		Output
A	В	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- **12.** (a) Subtract decimal number 45 from 87 using 2's complement method.
 - (b) Compare between weighted and unweighted codes. 3
 - (c) Explain the use of parity bit.
- **13.** Draw and explain 2's compliment parallel adder/subtractor circuit with one example.

14.	(a)	Draw and explain a simple tristate buffer.	5
	(b)	Draw and explain one-bit digital comparator.	5
15.	(a)	Draw and explain the operation of NAND latch.	5
	(b)	Write about level triggering and edge triggering.	5
16.	Dra	aw and explain master-slave JK flip-flop.	10
17.	(a)	Explain the terms resolution, accuracy and monotonicity of $\ensuremath{D}/\ensuremath{A}$ converter.	5
	(b)	Draw R-2R ladder network D/A converter.	5
18.	(a)	Explain the working of dynamic MOS RAM cell.	5
	(b)	Compare static RAM with dynamic RAM in any five aspects.	5

^ ^ ^