
co9-EC-306

3238

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2016
 DECE-THIRD SEMESTER EXAMINATION

CIRCUIT THEORY

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Differentiate between $A C$ and DC.
2. Define active and passive elements and give examples.
3. Define quality factor in resonance circuit.
4. Write the formula for star-to-delta transformation.
5. Define (a) branch, (b) node, and (c) loop.
6. Write the limitations of Thevenin's theorem.
7. State superposition theorem.
8. Define steady-state and transient response.
9. Draw a circuit of high-pass and low-pass RC circuit.
10. Define linear wave shaping.
[Contd...

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Derive the expression for alternating current through series RC circuit and obtain V-I relation.
(b) A capacitor having $C=10 \mu \mathrm{f}$ is connected in series with a resistance of 120Ω across $100-\mathrm{V}, 50-\mathrm{Hz}$ supply. Calculate current, phase angle and power consumed.
12. (a) Distinguish between series and parallel resonance circuits. 4
(b) A series circuit $R=5 \Omega, L=20 \mathrm{mH}$ and a variable capacitance C has an applied voltage with a frequency $f=1000 \mathrm{~Hz}$. Find the capacitance for series resonance.
(c) Define half-power frequencies.
13. (a) Define the driving-point impedance and transfer impedance.
(b) For the network shown in Fig. 1 below, calculate the currents I_{1} and I_{2} using mesh analysis :

Fig. : 1
14. (a) For the network shown in Fig. 2 below, find the voltage transfer function V_{o} / V_{i} by using Nodal method :

6

Fig. 2
(b) State Kirchhoff's current law and voltage law.
15. (a) State Norton's theorem and give its limitations.
(b) Find the current in $(2+j 3) \Omega$ branch for the network shown in Fig. 3 below using superposition theorem :

Fig. 3
16. (a) State the maximum power transfer theorem for $D C$ network.

3
(b) Define the reciprocity theorem and give its limitations.
(c) Explain ideal current source and ideal voltage source briefly.
17. (a) Derive the relation among $L 1, L 2, M$ and K.
(b) Two identical coils with $L=0.02 \mathrm{H}$ have a $K=0 \cdot 08$. Find two equivalent inductances with the coils connected in series aiding and series opposing.
18. (a) Explain how a low-pass RC circuit works as an integrator. 5
(b) Mention the application of a high-pass and a low-pass RC circuit.

