Code: C-09 EC-306

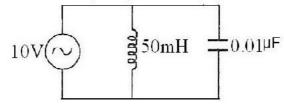
3238

BOARD DIPLOMA EXAMINATION, (C-09)

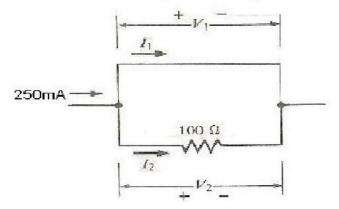
JUNE - 2019

DIPLOMA IN ELECTRONICS & COMMUNICATION ENGINEERING CIRCUIT THEORY

THIRD SEMESTER EXAMINATION


Time: 3 Hours Total Marks: 80

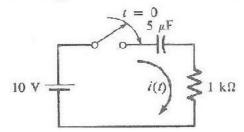
PART - A $(10 \times 3 = 30 \text{ Marks})$


Note 1:Answer all questions and each question carries 3 marks

2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

1. Find the resonant frequency in the ideal parallel LC circuit shown below.

- 2. A sinusoidal voltage of 5 kHz frequency is applied across a 10mH inductor. Determine the inductive reactance.
- 3. State the difference between active and passive circuit elements.
- 4. Find the current I_1 and voltage V_1 in the figure shown below.

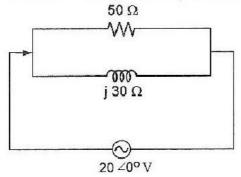


- 5. Define the following
 - a) Driving point admittance
 - b) Transfer admittance
- 6. List the advantages of Reciprocity theorem.
- 7. A constant current source develops a terminal voltage of 9V when a 500Ω resistor is connected across its terminals. What is its terminal voltage when the 500Ω resistor is replaced by a $1.5k\Omega$ resistor.

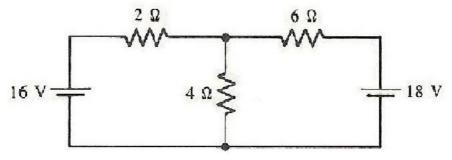
www.manaresults.co.in

Page: 1 of 3

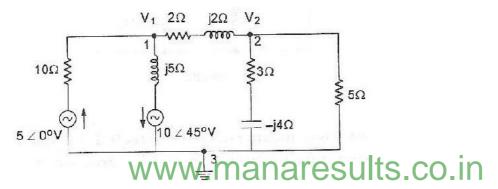
8. For the circuit shown in figure, write the mathematical expression for the charging current i (t) after the switch is closed.



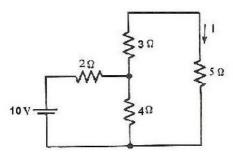
- 9. Write the expressions for the following parameters of low pass RC circuit
 - i) Upper 3dB frequency ii) Rise time in terms of upper 3dB frequency.
- 10. Define reflected impedance of a coupled circuit.


PART - B
$$(5 \times 10 = 50 \text{ Marks})$$

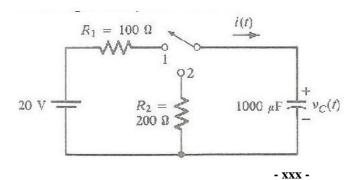
Note 1:Answer any five questions and each question carries 10 marks


- 2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer
- 11. For the circuit shown below, determine the total current, impedance and phase angle.

- 12. a) Distinguish between series and parallel resonance.
 - b) Explain the effect of resistance on bandwidth of a series resonant circuit.
- 13. Using Mesh analysis find the current in each resistor shown in figure below.



14. Write the node voltage equations for the network shown below and express them in matrix form.



4 M

- 15. a) Explain ideal voltage source and ideal current source.
 - b) A constant current source develops a terminal voltage of 9V when a 500Ω resistor is connected across its terminals. What is its terminal voltage when the 500Ω resistor is replaced by a $1.5k\Omega$ resistor?
- 16. a) Verify the reciprocity theorem in the circuit shown in figure below.

- 17. Find the equivalent inductance of two coupled coils with L_1 =20mH and L_2 =10mH and k=0.5 when connected in
 - a) Series aiding,
 - b) Series opposing.
- 18. With reference to the circuit shown in figure
 - a) Write the mathematical expression for i (t) and V_c (t) when the switch is placed in position 1.
 - b) Write the mathematical expression for i (t) and V_c (t) when the switch is placed in position2.after having been in position 1 for 1s.

