co9-EC-306

3238

BOARD DIPLOMA EXAMINATION, (C-09) SEPTEMBER/OCTOBER - 2020
 DECE-THIRD SEMESTER EXAMINATION

 CIRCUIT THEORY

 CIRCUIT THEORY}

Time : 3 hours]

PART—A
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the term 'resonance'.
2. Define RMS value and average value.
3. Define Q-factor of a capacitor circuit.
4. Define junction and loop.
5. Define transfer impedance.
6. Explain ideal voltage source.
7. Write the limitations of superposition theorem.
8. Write the principle of coupled circuits.
9. Write current, voltage equations for transient $R-C$ circuit.
10. What is linear wave shaping?

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Draw $V-I$ characteristics and calculate power of pure capacitor with AC source.
12. A coil having $L=0.14 \mathrm{H}$ and $R=9.43 \Omega$ is connected across a $50 \mathrm{~Hz}, 230 \mathrm{~V}$ supply. Calculate X_{L}, Z, I, V_{R} and V_{L}.
13. (a) Determine the number of mesh current required to solve the given network shown below :

(b) Write the expressions to convert star to delta network.
14. Find the current through $j 5 \Omega$ using nodal analysis :

15. (a) Write the statements of Norton's theorem and superposition theorem.
(b) Write the advantages of reciprocity theorem and maximum power transfer theorem.
16. Draw the Norton's equivalent circuit for the following network :

17. Two coupled coils with $L_{1}=0.02 \mathrm{H}, L_{2}=0.01 \mathrm{H}$ and $K=0.5$ are connected in two different ways-series aiding, series opposing arrangement, then find equivalent inductance for series aiding and series opposing.
18. Explain how a low-pass R - C circuit works as an integrator.

