co9-EC-306

## 3238

## BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2018 <br> DECE-THIRD SEMESTER EXAMINATION

## CIRCUIT THEORY

Time : 3 hours ]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Distinguish between a.c. and d.c.
2. Define bandwidth and selectivity of a resonant circuit.
3. State the phase relationship between voltage and current for the following components :
(a) Resistor
(b) Capacitor
(c) Inductor
4. Define driving point impedance and transfer impedance.
[ Contd...
5. State Kirchhoff's current law and voltage law.
6. Define superposition theorem.
7. Define Norton's theorem.
8. Draw a high pass $R-C$ circuit.
9. Define time constant of series $R$ - $C$ circuit.
10. Two coils connected in series having an equivalent inductance of 0.8 H when connected in aiding and equivalent inductance of 0.5 H when connected in opposing. Calculate the mutual inductance of the coils.

> PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Distinguish between series resonance and parallel resonance.
(b) Derive the expression for the resonant frequency of a series $R-L-C$ circuit and write the expressions for current and impedance at resonance.
12. A capacitor having a capacitance of $10 \mu \mathrm{~F}$ is connected in series with a pure resistance of $120 \Omega$ across a $100-\mathrm{V}, 50-\mathrm{Hz}$ supply. Calculate (a) current $I$, (b) phase angle $\phi$, and (c) power consumed.
13. (a) Find the voltage transfer function $V_{o} / V_{i}$ for the circuit shown below, using mesh current analysis :

(b) Obtain the star equivalent circuit for the delta connected circuit shown below :

14. (a) Determine the voltage at nodes 1 and 2 of the network shown below by using nodal analysis :

(b) Write the limitations of Ohm's law.
15. Obtain Thevenin's equivalent circuit for the circuit shown below at terminals $A$ and $B$ :

[ Contd...
16. Determine the maximum power delivered to the load $R_{L}$ in the circuit shown below :

17. (a) A series $R$ - $L$ circuit with $R=50 \Omega$ and $L=10 \mathrm{H}$ has a constant voltage $V=100$ volts applied at $t=0$ by closing a switch. Find the expression for current $i(t)$ :

(b) Draw the response of a low-pass $R-C$ circuit for a square wave input with different time constants.
18. (a) Explain that a high-pass $R-C$ circuit works as a differentiator.
(b) Explain the reflected impedance significance in coupled circuit and give the expression for the reflected impedance.

