
co9-Ee-105

3037

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2016
 DEEE-FIRST YEAR EXAMINATION
 BASIC ELECTRICAL ENGINEERING

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. State and explain Ohm's Law.
2. Define resistance and state its unit.
3. Define annealing and hardening. $11 / 2+1 \frac{1}{2}=3$
4. Define (a) mmf, (b) flux and (c) reluctance.
5. State Faraday's Laws of electromagnetic induction. 3
6. Define Lenz's Law. 3
7. Define potential and state its unit. $2+1$
8. State any three electrical properties of insulating materials.

$$
1+1+1=3
$$

[Contd...
9. Classify special purpose materials.
10. Distinguish between P and N type semiconductors. $1+1+1=3$

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. A house has the following loads :
(a) An immersion heats 1000 W , working for $2 \mathrm{hrs} /$ day
(b) 2 kW heaters working for $3 \mathrm{hrs} /$ day
(c) 10 lamps 100 W each working for $10 \mathrm{hrs} /$ day
(d) 5 ceiling fans 60 W each working for $10 \mathrm{hrs} /$ day

Calculate monthly electricity bill at 60 paise per unit.
12. (a) State the properties of Annealed copper.
(b) Write a short note on bimetal.
13. (a) Define thermal efficiency.
(b) An electric kettle is required to raise the temperature of 2 kg of water from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in 15 min . Calculate the resistance of the heating element if the kettle is to be used on 240 V supply. Assume efficiency of the kettle to be 80%.
14. (a) Derive the equation for force between two current-carrying conductors.
(b) The conductors of an overhead line carry a current of 1200 A each. Find the force between them per metre length. The distance between the centres of the conductors is 1.2 metres.
15. (a) Determine the equation for energy stored in the magnetic field.
(b) A d-c shunt motor has field current 1 Amp and a flux of $0.025 \mathrm{~Wb} /$ pole. Calculate the energy stored if the field coil has 1200 turns.
16. (a) State and explain Coloumb's Laws of electrostatics.
(b) Two small balls having charges one doubles other are placed at a distance of 0.5 m apart in air. If the repulsive force between the balls is 2.75 N , determine the charge on each ball.
17. State the properties and applications of the following : 10
(a) Paper
(b) Wood
(c) Ceramics
18. (a) What is a zener diode? Explain the operation of zenner diode.

5
(b) Explain VI characteristics of zener diode. 5

