
co9-Ee-105

3037

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2017
 DEEE-FIRST YEAR EXAMINATION
 BASIC ELECTRICAL ENGINEERING

Time : 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State and explain Ohm's Law.
2. Define the terms (a) 'specific resistance' and (b) 'conductivity'.

$$
1 \frac{1}{2}+11 / 2=3
$$

3. Distinguish between (a) copper and (b) aluminium in three aspects.
4. Compare magnetic circuit with electric circuit in any three aspects.
5. State Lenz's law, and explain the Fleming's right-hand rule.

$$
11 / 2+1^{1} / 2=3
$$

6. State Faraday's laws of electromagnetic induction.
$1 \frac{1}{2}+1 \frac{1}{2}=3$
7. State and explain Gauss theorem.
$1_{1}^{1 / 2}+1_{1 / 2}=3$
8. Explain any three factors that affect the insulating resistance.
$1+1+1=3$
[Contd... WWW. MANARESULTS.CO.IN
9. State the bi-metals.

$$
1+1+1=3
$$

10. State the different transistor configurations. $1+1+1=3$

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Deduce the relation $R=(\rho l) / a$.
(b) Determine the resistance of a 600 mt length of aluminium conductor whose rectangular cross-section is 6 cm and 3 cm . Take $\rho=2 \cdot 826 \times 10^{-8} \cdot \Omega-\mathrm{mt} . \quad 4+6=10$
12. (a) State the requirements of high-resistivity materials.
(b) Briefly explain the process of galvanizing and impregnation.
13. (a) Explain the mechanical equivalent of heat.
(b) An electric kettle is marked $500 \mathrm{~W}, 230 \mathrm{~V}$ and is found to take 20 minutes to raise 1 kg of water from $15^{\circ} \mathrm{C}$ to boiling point. Calculate the efficiency of the kettle.

$$
5+5=10
$$

14. (a) State the Fleming's left-hand rule.
(b) Develop the expression for the force between two parallel current carrying conductors.

$$
2+8=10
$$

15. Derive the expressions for self- and mutual inductances.

$$
5+5=10
$$

[Contd...
16. (a) Derive the equivalent capacitance for three capacitors connected in series.
(b) Three capacitors having capacitances of $10 \mu \mathrm{~F}, 30 \mu \mathrm{~F}$ and $90 \mu \mathrm{~F}$ are connected in parallel across 220 V DC. Find the equivalent capacitance and the charge on each capacitor.

$$
5+5=10
$$

17. Explain the properties and applications of PVC. $5+5=10$
18. (a) Distinguish between P-type and N-type semiconductors.
(b) Explain the operation of Zener diode.
$4+6=10$
