C09-EE-303

3241

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2017 DEEE—THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define active circuit and passive circuit.
- 2. State Thevenin's theorem.
- **3.** Define average value, form factor and peak factor.
- **4.** Derive the RMS value of a full-wave rectified sine waveform.
- **5.** Perform and represent in polar form (a) A B and (b) A / B, where A 5 j6 and B 6 j8.
- **6.** Derive an expression for current in pure capacitive circuit, when an alternating voltage v $V_m \sin t$ is applied.
- **7.** State the formula for power factor in *R-L-C* series circuit.
- **8.** Compare series with parallel resonant circuits.

/3241 1 [Contd...

- 9. Give the advantage of polyphase system.
- **10.** List the relation between line values and phase values in star and delta connected systems.

PART—B 10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. (a) State Kirchhoff's laws.

4

(b) Determine the equivalent resistance across AB of the circuit shown in Fig. 1:

Fig. 1

12. Find the current through 20 resistance of the network (Fig. 2) by using superposition theorem:

WWW.MANARESULTS.CO.IN

13.	(a)	State and explain the maximum power transfer theorem.	7
	(b)	The equation of an alternating current is i 100 sin 628 t . Determine—	
		(i) RMS value;	
		(ii) average value;	
		(iii) time period.	3
14.	(a)	Convert the following rectangular to polar or polar to rectangular:	4
		(i) 4 j6	
		(ii) 20 30	
	(b)	Show the average power consumed in an inductor and a capacitor is zero.	6
15.	ser imp	resistance of 10° and inductance of 0.1° H are connected in eries across a supply of 220 V and 50 Hz. Determine (i) the appedance, (ii) current flowing, (iii) power factor, (iv) the phase angle between V and I and (v) total power consumed.	
16.	in 1	o impedances Z_1 10 j 15 and Z_2 6 j 8 are connected parallel. If the total current supplied is 15 A, find the voltage blied, current and the power taken by each branch.	10
17.	C = (a)	series RLC circuit consists of 1000 , $L = 100$ mH and 10 pF. If the applied voltage across the circuit is 100 V, find resonant frequency, (b) current at resonance and (c) Q-factor the circuit.	10
18.	cur	palance 3- star connected load of 150 kW takes a leading trent of 100 A with a line voltage of 1100 V at 50 Hz. Find the wer factor and circuit constants and draw its vector diagram.	10