
co9-Ee-303

3241

BOARD DIPLOMA EXAMINATION, (C-09) OCT / NOV—2017

DEEE-THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time : 3 hours]
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. State Thevenin's theorem. 3
2. Define the following terms :
$1+1+1=3$
(a) Lumped parameters
(b) Distributed parameters
(c) Mesh of an electric network
3. Derive the RMS value of a full wave rectified alternating quality.
4. Perform the following operations and express then in rectangular form :
(a) $(A+B)$
(b) $(A-B)$
when $A=(10 \angle 30), B=(5 \angle-60)$.
5. Two currents are given by the expression $i_{1}=15 \sin \left(314 t+60^{\circ}\right) \mathrm{amp}, \quad i_{2}=10 \sin \left(314 t-45^{\circ}\right) \mathrm{amp}$. Find $i_{1}-i_{2}$ and represent in the similar form.
6. Draw a vector diagram of an $R-L-C$ series circuit if $X_{L}>X_{C}$. 3
7. Define Q-factor for a parallel resonant circuit.
8. What are the different methods by which a parallel a.c. circuit can be solved?
9. A 3-phase, $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is given to a balanced delta connected load. The current in each branch circuit is 30 A and phase angle is $30^{\circ} \mathrm{lag}$, find-
(a) the line current;
(b) total power.
10. Compare between star- and delta-connection of 3- ϕ system. 3
PART—B

$$
10 \times 5=50
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Determine the value of R for maximum power in the resistance as shown in the figure and also calculate the power delivered under these conditions.

(b) Using Norton's theorem, find the current in the load resistance R_{L} of the circuit shown below.

12. (a) Explain superposition theorem.
(b) Find the current in the 4Ω resister of branch $A B$ of the
network shown in the figure by using superposition theorem.
13. An alternating current of frequency 60 Hz has a maximum value of 120 A .
(a) Write the equation for instantaneous value.
(b) Reckoning time from the instant the current is zero and becoming positive, find the instantaneous value after $1 / 360 \mathrm{sec}$.
(c) Find the time taken to reach 96 A for the first time.
14. (a) The current flowing through a pure inductor is 20 A . Find the inductance and power consumption when the voltage applied the inductor is $V=200 \sin 314 t$.
(b) Show that the power consumed by a pure inductor is zero when AC supply is applied to it.
15. (a) Derive an expression for impedance of an AC circuit consisting of resistance and a pure capacitor in series. Draw also the vector diagram.
(b) A capacitor of $50 \mu \mathrm{~F}$ is connected in series with a resistor of 100Ω. The combination is connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. Calculate (i) impedance (ii) current (iii) power factor (iv) active power (v) reactive power. $1+1+1+1+1$
16. A coil having a fixed resistance of 5Ω and an inductive reactance of 20Ω are connected in series. The whole circuit is connected across 230 V 50 Hz AC supply. Calculate (a) current drawn (b) power factor (c) active power (d) reactive power.
17. (a) Three similar coils, each having a resistance of 20Ω and inductance of 0.05 H are connected in star to a 3-phase 50 Hz supply with 400 V between lines. Calculate the total power absorbed and the line current.
(b) A balanced 3-phase star-connected load of 100 kW takes a leading current of 80 A . When connected across 3-phase $1100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, find the circuit constants of the load per phase.
18. (a) Determine the resistance of the circuit between points P and Q as shown in figure.

(b) How will the parameters resistance, inductive reactance, capacitive reactance vary with the frequency?

