3477

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2018

DEEE - FOURTH SEMESTER EXAMINATION

DIGITAL ELECTRONICS AND MICRO CONTROLLERS

Time : 3 hours]

PART—A

$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Convert Decimal 1298 into Octal number system.
2. Draw the logic circuit and explain the function of Half - adder.
3. Draw the circuit of RST flip flop using NAND gates.
4. What are the differences between asynchronous and synchronous counters.
5. List any six bit - addressable registers of 8051 Microcontroller.
6. Draw the pin diagram of 8051 microcontroller.
7. Explain the difference between MOV and MOVX instructions.
8. Explain the MUL AB instruction with one example.
9. List the different addressing modes of 8051.
10. Write a program to transfer the content of memory location 4500 H to the iRAM location 40H, registres R2 and R3.

Instructions: (1) Answer any five questions.
(2) Each questions carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. a) Draw the logic circuit and explain the operation of 4 X 2 encoder.
b) State the need for A/D and D/A converters.
12. a) Draw the symbols and explain the operation of the following with their truth tables. i) NAND gate ii) OR gate.
b) State and explain De-Morgan's theorems.
13. a) Briefly explain the data movement in the following registers with block diagrams. i) SISO ii) PIPO
b) Explain the operation of 4 bit shift left register with diagram.
14. a) Distinguish Between ROM and RAM.
b) Draw the circuit and explain the working of dynamic memory.
15. Explain the internal organization of intrenal RAM of 8051 microcontroller.
16. Draw and explain the bit wise description of TMOD and TCON registers.
17. a) Explain RET and RETI instructions.
b) Compare LJMP, AJMP and SJMP instructions.
18. Write an assembly language program along with comments to multiply two 8-bit numbers stored in the memory locations 2400 H and 2401 H and save the result at 2402 H and 2403 H .

