C09-EE-406/C09-CHST-406

3478

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2017

 DEEE-FOURTH SEMESTER EXAMINATION

 DEEE-FOURTH SEMESTER EXAMINATION}

GENERAL MECHANICAL ENGINEERING

Time : 3 hours]
Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Draw stress-strain diagram for mild steel and show the salient points on it.
2. Define (a) modulus of elasticity and (b) bulk modulus. $1 \frac{1}{2}+1 \frac{1}{2}=3$
3. Write down simple torsion equation and name its terms.
4. A solid circular shaft of diameter 32 mm transmits 92 kW at 525 r.p.m. Find the shear stress developed in the shaft material.
5. State the functions of (a) piston rings and (b) connecting rod.

$$
11 / 2+11 / 2=3
$$

6. What is the function of a governing of IC engine?
7. Differentiate between fire-tube boiler and water-tube boiler.
8. State the differences between surface condenser and jet
condenser.
9. State any three advantages of centrifugal pump.
10. Why is lubricant necessary?

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A bar of 25 mm diameter is subjected to a pull of 50 kN . The measured extension over a gauge length of 200 mm is 0.1 mm and change in diameter is 0.0035 mm . Find Poisson's ratio and moduli of elasticity.
12. The following results are obtained from a tensile test on an m.s. specimen :

Diameter of specimen	$=20 \mathrm{~mm}$
Gauge length	$=100 \mathrm{~mm}$
Extension at a load of 80 kN	$=0.125 \mathrm{~mm}$
Load at yield point	$=110 \mathrm{kN}$
Maximum load	$=185 \mathrm{kN}$
Final elongation	$=30 \mathrm{~mm}$
Diameter of neck	$=12.6 \mathrm{~mm}$

Calculate-
(a) Young's modulus;
(b) stress at yield point;
(c) ultimate tensile stress;
(d) percentage elongation;
(e) percentage reduction in area.
13. A solid steel shaft of 150 mm diameter transmits 100 kW power at 250 r.p.m. Taking modulus of rigidity of $0.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine (a) angle of twist in a length of 600 mm and (b) shear stress at a radius of 45 mm .
14. Explain the working principle of 4 -stroke petrol engine with a neat sketch.
15. Explain the working of Babcock and Wilcox boiler with a neat sketch.
16. Explain the working principle of open-cycle gas turbine. 10
17. Describe the working principle of Francis turbine. 10
18. Draw a simple sketch showing the installation of a centrifugal pump indicating various components and hydraulic heads. 10

