

C09-EE-406/C09-CHST-406

3478

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2017 DEEE—FOURTH SEMESTER EXAMINATION

GENERAL MECHANICAL ENGINEERING

Time : 3 hours]

[Total Marks : 80

PART—A 3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- Draw stress-strain diagram for mild steel and show the salient points on it.
- **2.** Define (a) modulus of elasticity and (b) bulk modulus. $1\frac{1}{2}+1\frac{1}{2}=3$
- **3.** Write down simple torsion equation and name its terms. 3
- **4.** A solid circular shaft of diameter 32 mm transmits 92 kW at 525 r.p.m. Find the shear stress developed in the shaft material.
- **5.** State the functions of *(a)* piston rings and *(b)* connecting rod.

11/2+11/2=3

3

6. What is the function of a governing of IC engine? 3

7. Differentiate between fire-tube boiler and water-tube boiler. 3

/3478 1 [Contd... WWW.MANARESULTS.CO.IN

8.	State the differences between surface condenser and jet condenser.	3
9.	State any three advantages of centrifugal pump.	3
10.	Why is lubricant necessary?	3

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. A bar of 25 mm diameter is subjected to a pull of 50 kN. The measured extension over a gauge length of 200 mm is 0·1 mm and change in diameter is 0·0035 mm. Find Poisson's ratio and moduli of elasticity.
 10
- **12.** The following results are obtained from a tensile test on an m.s. specimen :

Diameter of specimen	20 mm
Gauge length	100 mm
Extension at a load of 80 kN	0 125 mm
Load at yield point	110 kN
Maximum load	185 kN
Final elongation	30 mm
Diameter of neck	12 6 mm

Calculate—

- (a) Young's modulus;
- (b) stress at yield point;
- (c) ultimate tensile stress;
- (d) percentage elongation;
- (e) percentage reduction in area.

10

[Contd...

/3478

WWW.MANARESULTS.CO.IN

2

13.	A solid steel shaft of 150 mm diameter transmits 100 kW power at 250 r.p.m. Taking modulus of rigidity of 0 85 10^5 N/mm ² , determine (a) angle of twist in a length of 600 mm and (b) shear stress at a radius of 45 mm.	10
14.	Explain the working principle of 4-stroke petrol engine with a neat sketch.	10
15.	Explain the working of Babcock and Wilcox boiler with a neat sketch.	10
16.	Explain the working principle of open-cycle gas turbine.	10
17.	Describe the working principle of Francis turbine.	10
18.	Draw a simple sketch showing the installation of a centrifugal pump indicating various components and hydraulic heads.	10

 $\star\star\star$

*