

C09-EE-406/C09-CHST-406

3478

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2018

DEEE—FOURTH SEMESTER EXAMINATION

GENERAL MECHANICAL ENGINEERING

Time : 3 hours]

[Total Marks : 80

3

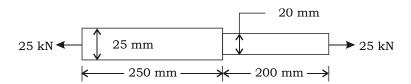
3

3

3

3×10=30
3

Instructions : (1) Answer all questions.


- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Define shear modulus and state its SI units. 2+1=3
- **2.** Draw stress-strain diagram for mild steel and name the salient points.
- **3.** Write the formulae for polar moment of inertia for solid shaft and hollow shaft. $1\frac{1}{2}+1\frac{1}{2}=3$
- A solid shaft is required to transmit a torque of 35820 N-m. The shear stress in the shaft must not exceed 60 N/mm². Calculate the size of the shaft.
- **5.** List the operations involved in operating an IC engine.
- **6.** Write any three advantages of fire-tube boiler over water-tube boiler.
- **7.** Draw a simple sketch of IC engine and label its parts. 3

/3478 [Contd... 1 WWW.MANARESULTS.CO.IN

- **8.** State the function of (*a*) spark plug and (*b*) fuel injection pump. $1\frac{1}{2}+1\frac{1}{2}=3$
- 9. How are the impellers arranged to produce high head and to deliver high discharge in centrifugal pump?3
- **10.** State the functions of a lubricant.

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** A steel bar is subjected to a tensile force as shown in the figure below. Determine the total elongation of the bar and stress in each section. Take $E = 2 \cdot 10^5 \text{ N/mm}^2$: 10

12. The following results are obtained from a tensile test on a MS specimen :

(i)	Diameter of the specimen	=	20 mm
(ii)	Gauge length	=	100 mm
(iii)	Extension at a load of 80 kN	=	0·125 mm
(iv)	Load at yield point	=	110 kN
(v)	Maximum load	=	185 kN
(vi)	Final elongation	=	30 mm
(vii	i) Diameter of neck	=	12·6 mm

Calculate (a) Young's modulus, (b) stress at yield point, (c) the ultimate tensile stress, (d) the percentage elongation and (e) the percentage reduction in area. $2 \times 5 = 10$

/3478

[Contd...

WWW.MANARESULTS.CO.IN

- 13. A solid steel shaft 100 mm diameter transmits power at 150 r.p.m. If the maximum shear stress induced in it is $25 \text{ N}/\text{mm}^2$, calculate (a) the power transmitted in kW and (b) the value of shear stress at a radial distance of 30 mm from its centre. 5+5=10
- 14. Explain with the help of a line sketch, the working principle of a four-stroke petrol engine. 10 **15.** Describe the function of economizer with a neat sketch.
- 16. Explain the working of Parson's reaction turbine with a neat sketch. 10
- **17.** Explain the working of Kaplan turbine with a neat sketch. 10
- 18. What is priming in the centrifugal pump? Why is it necessary?

7 + 3 = 10

10

* * *