C09-EE-408

3479

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV—2018

DEEE-FOURTH SEMESTER EXAMINATION

ELECTRICAL ENGINEERING DRAWING

Time : 3 hours]
Total Marks : 60

PART—A
$5 \times 4=20$

Instructions : (1) Answer all questions.
(2) Each question carries five marks.
(3) Drawing should be neat with necessary dimensions.

1. Draw the cross-sectional view of HRC fuse and label the parts.
2. Draw the free-hand sketch of an end view of a DC machine showing main pole and inter pole.
3. Draw a free-hand sketch of 132 kV tower for double circuit and mention the standard dimensions.
4. Draw the plinth mounted transformer with single pole neatly and label the parts.

Instructions : (1) Answer any two questions.
(2) Each question carries twenty marks.
(3) Drawing should be neat with necessary dimensions.
5. (a) Draw the assembled sectionised view of the armature core, hub and shaft whose dimensions are as follows : 10

Diameter of the shaft : 130 mm
Diameter of the core $: 900 \mathrm{~mm}$
Diameter of the hub : 770 mm
Radius from the centre of the axle to the bolt circle $\quad: 210 \mathrm{~mm}$
Diameter of bolt head : 20 mm
Dimension of ventilating duct : 200 mm
towards bolt
240 mm
towards axle
Distance of duct from the axle centre : 105 mm
Flange thickness : 20 mm
Depth of flange : 90 mm
Length of core gap equally spaced : 230 mm with 10 mm
Total distance between the two hubs : 500 mm
Assume the missing dimensions.
(b) Develop a 3-phase single-layer wave winding for 24-slots, 4-pole AC induction motor.
6. Draw the sectional elevation and plan of a three phase transformer with the following data :

Cross-sectional of the core : 3 stepped core
Diameter of the circum circle $: 24 \mathrm{~cm}$
Distance between core centres : 42.5 cm
Size of first core : 21.6 cm
Size of second core $: 16.8 \mathrm{~cm}$
Size of third core : 10.0 cm
Height of yoke $: 25 \cdot 0 \mathrm{~cm}$
Overall height of yoke and core : 100.0 cm
[Contd...

Length of core	$: 108.0 \mathrm{~cm}$
Outer dia of LT winding	$: 28.3 \mathrm{~cm}$
Inner dia of LT winding	$: 25.0 \mathrm{~cm}$
Height of LT winding	$: 43.5 \mathrm{~cm}$
Number of turns per phase	$: 12$
Outer dia of HT winding	$: 41.5 \mathrm{~cm}$
Inner dia of HT winding	$: 34.3 \mathrm{~cm}$
Height of HT winding	$: 43.5 \mathrm{~cm}$
Number of turns per phase	$: 572$

Assume any missing dimensions. 20
7. Draw the half-sectional elevation and view of a 3-phase 440 -volts squirrel cage induction motor with the following dimensions :

Outer diameter of stator stampings : 230 mm
Inside diameter of stator stampings : 164 mm
Length of stator core : 120 mm
Thickness of stator frame : 25 mm
Type of slot : Open
No. of stator slots : 36
Size of stator slots $: 15 \mathrm{~mm} \times 8 \mathrm{~mm}$
Width of air gap : 2 mm
Outer diameter of rotor stampings : 160 mm
Inner diameter of rotor stampings : 35 mm
Shaft diameter at centre : 35 mm
Shaft diameter at bearing : 30 mm
Distance between bolt hole to bolt hole : 185 mm
Total distance of footrest : 220 mm
Assume any missing dimensions and label the parts.

