

с09-м-403

3503

BOARD DIPLOMA EXAMINATION, (C-09)
 OCT/NOV-2016
 DME-FOURTH SEMESTER EXAMINATION

STRENGTH OF MATERIALS

Time : 3 hours]
[Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the following :
(a) Lateral strain
(b) Volumetric strain
(c) Strength
2. A material has a Young's modulus of $1.25 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and a Poisson's ratio of 0.25 . Calculate (a) modulus of rigidity and (b) bulk modulus.
3. An axial pull of 150 kN is gradually applied on a circular steel rod 5 m long and 50 mm diameter. Find the strain energy that can be stored in the rod. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
4. What are meant by (a) shear force diagram and (b) bending moment diagram?
[Contd...
5. Draw shear force and bending moment diagrams for a simply supported beam which is loaded with a point load W at its midpoint. Take length of the beam L.
6. A steel wire 8 mm diameter is bent into a circular shape of 9 m radius. Determine the maximum stress induced in the wire. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
7. A cantilever of length 7 m is carrying a UDL of $16 \mathrm{kN} / \mathrm{m}$. Calculate the deflection at the free end if moment of inertia, $I=85 \times 10^{7} \mathrm{~mm}^{4}$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. A circular shaft is required to transmit a torque of $6 \mathrm{kN}-\mathrm{m}$. If the permissible angle of twist is 2 degrees over the length of 4 m , find the diameter of the shaft. Take $G=8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
9. Define (a) spring index and (b) spring stiffness.
10. A gas cylinder 2 m internal diameter is 15 mm thick. Find the allowable pressure of the gas if the tensile stress in the metal is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$ and efficiency of the joint is 80%.

PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A rectangular block $250 \mathrm{~mm} \times 100 \mathrm{~mm} \times 75 \mathrm{~mm}$ is subjected to axial loads as follows :
(a) 480 kN tensile load on the $100 \mathrm{~mm} \times 75 \mathrm{~mm}$ face
(b) 1000 kN compressive load on the $250 \mathrm{~mm} \times 100 \mathrm{~mm}$ face
(c) 900 kN tensile load on the $250 \mathrm{~mm} \times 75 \mathrm{~mm}$ face

Assuming Poisson's ratio as 0.25 and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, calculate the change in volume of the block due to application of loading specified above.
12. A steel bar is placed between two copper bars each having same area and length as the steel bar is at $15{ }^{\circ} \mathrm{C}$. At this stage, they are rigidly connected together at both ends. When temperature is raised to $315{ }^{\circ} \mathrm{C}$, the length of the bars increases by 1.5 mm . Determine the original length and final stresses in the bars. Take $E_{s}=2 \cdot 1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \quad E_{c u}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \quad \alpha_{s}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$, $\alpha_{c u}=17.5 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$.
13. A mild steel bar of length 2.5 m has a diameter of 55 mm , hangs vertically. A load of 25 kN falls on a collar attached to the lower end. Find the maximum stress when-
(a) height of fall is 150 mm ;
(b) the load is applied suddenly without impact;
(c) the load is applied gradually.

Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
14. A beam 5 m long supported at the ends carries point loads of $140 \mathrm{kN}, 60 \mathrm{kN}$ and 80 kN at a distance of $0.5 \mathrm{~m}, 2.5 \mathrm{~m}$ and 3.5 m respectively from the left end. Draw the shear force and bending moment diagrams.
15. A simply supported beam of span (length between supports) 4 m has an overhanging of 1 m on right-hand support. Point loads of 2 kN and 1 kN act at 5 m and 2 m respectively from the left-hand support and UDL of $2 \mathrm{kN} / \mathrm{m}$ over a length of 2 m from the left hand support. Draw the shear force and bending moment diagrams.
16. A wooden beam of rectangular cross section 125 mm wide $\times 200 \mathrm{~mm}$ depth is simply supported at its ends and has a span of 5 m . If the maximum allowable bending stress is $7.5 \mathrm{~N} / \mathrm{mm}^{2}$, what is the maximum deflection? Take $E=0 \cdot 1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
17. Find the diameter of a solid circular shaft to transmit 750 kW at 250 r.p.m. It is specified that the maximum shear stress must not exceed $40 \mathrm{~N} / \mathrm{mm}^{2}$ and the angle of twist must not exceed one degree in a length of 20 times the diameter. Take $G=0.82 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$.
18. (a) A closed coiled helical spring is required to exert a force of 3.5 kN and to have stiffness of $75 \mathrm{kN} / \mathrm{m}$. If the mean diameter of the coil is to be 100 mm and the working stress $200 \mathrm{~N} / \mathrm{mm}^{2}$, find the number of turns and diameter of spring wire with which it is made. Take $G=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(b) Derive the expression for hoop stress of a thin cylinder subjected to internal pressure.

