
co9-M-406

3506

BOARD DIPLOMA EXAMINATION, (C-09)

APRIL/MAY-2015

DME—FOURTH SEMESTER EXAMINATION

HYDRAULICS AND FLUID POWER SYSTEMS
Time : 3 hours]
Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define specific gravity and density.
2. State Bernoulli's theorem. Give any two practical applications of Bernoulli's theorem.
3. Write the equation for power transmission through pipes and mention what each letter stands for and state their units. $1+2$
4. Derive the expression for the force exerted by the jet when it strikes at the centre of fixed curved vane.
5. State the function of the following parts of the Pelton wheel :
(a) Casing
(b) Nozzle
[Contd...
6. How do you classify water turbines based on direction of water flow? Give examples.
7. What is the difference between centrifugal pump and reciprocating pump?
8. List the essential components of a hydraulic system and state the function of any one component.
9. What is the necessity of safety circuits in pneumatic systems? 3
10. State the applications of hydro-pneumatic system.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Explain how pressure is measured at a point in a fluid flowing through a pipe using-
(a) U-tube manometer;
(b) inverted deferential manometer.
12. A venturi meter $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ is used for measuring the flow of oil of specific gravity $0 \cdot 8$. The oil-mercury differential gauge shows a deflection of 250 mm . Find the discharge of oil if the coefficient of the meter is 0.98 .
13. Explain (a) hydraulic gradient line and (b) total energy line.
14. A jet of $78.54 \mathrm{~cm}^{2}$ area moving with a velocity of $12 \mathrm{~m} / \mathrm{s}$ impinges on a series of vanes moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$. Determine-
(a) force on the plate;
(b) work done per second;
(c) efficiency.
[Contd...
15. A Kaplan turbine produces 36 MW under a head of 20 m with an overall efficiency of 94%. Ratio of d/D is $1 / 3$, flow ratio is $1 / 2$ and speed ratio is 2 . Estimate the diameter of turbine boss and turbine speed.
16. A double-acting reciprocating pump has piston diameter 50 mm , length of stroke is 400 mm and crank speed is 60 r.p.m. The suction and delivery heads are 5 m and 18 m respectively. Determine the quantity of water lifted/min and power required. [Specific weight of water is $9.81 \mathrm{kN} / \mathrm{m}^{3}$] $5+5$
17. Explain the following with neat sketches :
(a) Hydraulic jack
(b) Hydraulic crane
18. (a) State the elements of pneumatic circuit. Write the functions of any two elements.
(b) State the areas of application of pneumatic power unit. 3

