

с14-с-102/с14-см-102

4015

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2016 DCE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

[Total Marks : 80

PART—A 3×10=30

Instructions : (1) Answer all questions.

(2) Each question carries three marks.

1. Resolve $\frac{7x \ 6}{(x \ 1)(x \ 2)}$ into partial fractions.

- **2.** Solve for x, if $\begin{vmatrix} 1 & 0 & 1 \\ 2 & x & 3 \\ 1 & 3 & 2 \end{vmatrix}$ 3.
- **3.** If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$, then find the matrix X such that 2X = A = B.
- **4.** Prove that $\frac{\cos(A \ B)}{\cos A \sin B}$ tan A $\cot B$.

5. If $\tan 2$, then find $\cos 2$.

/4015 1 [Contd... WWW.MANARESULTS.CO.IN

- **6.** Express in modulus-amplitude form of the complex number $\sqrt{3}$ *i*1.
- **7.** Find the point of intersection of the lines $2x \ 4y \ 6$ and $x \ 4y \ 3$.
- **8.** Find the equation of the circle with (1, 2) and (4, 5) as the end points of a diameter of the circle.
- 9. Evaluate :

$$\operatorname{Lt}_{x} \frac{1 \quad \cos 2x}{\sin 2x}$$

10. Find $\frac{dy}{dx}$ if y = ct and $x = \frac{c}{t}$.

PART—B 10×5=50

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.(2) Each question carries ten marks.11. (a) Find the inverse of A(a) Find the inverse of A(b) Solve the following equations by Cramer's rule :
x y z 0, 2x y z 1 and 3x 2y 2z 5

12. (a) If $\tan^{-1} x \tan^{-1} y \tan^{-1} z \frac{1}{2}$, then show that xy yz zx 1.

(b) Prove that $\cos 10^\circ \cos 50^\circ \cos 70^\circ \frac{\sqrt{3}}{8}$.

/4015 2 [Contd... WWW.MANARESULTS.CO.IN **13.** (a) If $b\cos^2\frac{C}{2} c\cos^2\frac{B}{2} \frac{3a}{2}$, show that the sides of the triangle are in AP.

- (b) Solve $\cos 5 \cos 3$.
- **14.** (a) Find the equation of the rectangular hyperbola whose focus is (1, 3) and the directrix is x 2y 7 0.
 - (b) Find the coordinates of the centre, vertices, eccentricity, foci, length of the latus rectum of the ellipse $25x^2$ $16y^2$ 1600.
- **15.** (a) Find the derivative of $\log[\sin(\cos(e^x))]$ with respect to x.

(b) Differentiate tan
$$1 \frac{2x}{1 x^2}$$
 with respect to x.

16. (a) Find
$$\frac{dy}{dx}$$
, if $y = \frac{(x-1)^2(2x-3)^2}{(x^2-2)^2(x^3-3)^3}$.
(b) If $u = x^2 - y^2 - z^2$, then show that $x - \frac{u}{x} - y - \frac{u}{y} - z - \frac{u}{z} - 2u$.

- 17. (a) Find the lengths of tangent, normal, sub-tangent and sub-normal to the curve $y = x^3 = 2x$ 5 at the point (1, 4).
 - (b) A ladder is 13 m long leans against a vertical wall. If the lower end is pulled away from the wall at the rate of 1 m/sec along the horizontal floor, how fast is the top descending when the lower end is 12 m away from the wall?
- **18.** (*a*) The sum of the lengths of the sides of a rectangle is constant. If the area is to be maximum, then show that the rectangle is a square.
 - (b) The radius of a sphere was determined as 10.01 cm instead of 10 cm. Find approximately the errors in its volume and surface area.

* * *

WWW.MANARESULTS.CO.IN

AA16—PDF

/4015