C14-C-102/C14-CM-102

4015

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH/APRIL-2016 DCE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{7 x-6}{(x-1)(x-2)}$ into partial fractions.
2. Solve for x, if $\left|\begin{array}{lll}1 & 0 & 1 \\ 2 & x & 3 \\ 1 & 3 & 2\end{array}\right|=3$.
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$, then find the matrix X such that $2 X+A=B$.
4. Prove that $\frac{\cos (A-B)}{\cos A \sin B}=\tan A+\cot B$.
5. If $\tan \theta=2$, then find $\cos 2 \theta$.
[Contd...
6. Express in modulus-amplitude form of the complex number $\sqrt{3}+i 1$.
7. Find the point of intersection of the lines $2 x+4 y=6$ and $x-4 y=-3$.
8. Find the equation of the circle with $(1,2)$ and $(4,5)$ as the end points of a diameter of the circle.
9. Evaluate :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{1-\cos 2 x}{\sin 2 x}
$$

10. Find $\frac{d y}{d x}$ if $y=c t$ and $x=\frac{c}{t}$.
PART—B

$$
10 \times 5=50
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Find the inverse of $A=\left[\begin{array}{lll}2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3\end{array}\right]$, if exists.
(b) Solve the following equations by Cramer's rule :

$$
x+y-z=0,2 x+y-z=1 \text { and } 3 x+2 y+2 z=5
$$

12. (a) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, then show that

$$
x y+y z+z x=1
$$

(b) Prove that $\cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\frac{\sqrt{3}}{8}$.
13. (a) If $b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=\frac{3 a}{2}$, show that the sides of the triangle are in AP.
(b) Solve $\cos \theta+\cos 5 \theta=\cos 3 \theta$.
14. (a) Find the equation of the rectangular hyperbola whose focus is $(-1,-3)$ and the directrix is $x+2 y+7=0$.
(b) Find the coordinates of the centre, vertices, eccentricity, foci, length of the latus rectum of the ellipse $25 x^{2}+16 y^{2}=1600$.
15. (a) Find the derivative of $\log \left[\sin \left(\cos \left(e^{x}\right)\right)\right]$ with respect to x.
(b) Differentiate $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ with respect to x.
16. (a) Find $\frac{d y}{d x}$, if $y=\frac{(x-1)^{2}(2 x+3)^{2}}{\left(x^{2}-2\right)^{2}\left(x^{3}-3\right)^{3}}$.
(b) If $u=x^{2}+y^{2}+z^{2}$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2 u$.
17. (a) Find the lengths of tangent, normal, sub-tangent and sub-normal to the curve $y=x^{3}-2 x+5$ at the point $(1,4)$.
(b) A ladder is 13 m long leans against a vertical wall. If the lower end is pulled away from the wall at the rate of $1 \mathrm{~m} / \mathrm{sec}$ along the horizontal floor, how fast is the top descending when the lower end is 12 m away from the wall?
18. (a) The sum of the lengths of the sides of a rectangle is constant. If the area is to be maximum, then show that the rectangle is a square.
(b) The radius of a sphere was determined as 10.01 cm instead of 10 cm . Find approximately the errors in its volume and surface area.

