

4015

BOARD DIPLOMA EXAMINATION, (C-14)
 APRIL/MAY-2015 DCE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Resolve $\frac{x-4}{(x-2)(x-3)}$ into partial fractions.
2. If $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & -3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 2 & 1 \\ 4 & 3 & 2\end{array}\right]$, find $2 A+3 B$.
3. Find the value of $\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|$
4. Show that $\tan 8 A-\tan 5 A-\tan 3 A=\tan 8 A \tan 5 A \tan 3 A$.
5. Prove that $\frac{\sin 2 \theta}{1-\cos 2 \theta}=\cot \theta$.
[Contd...
6. Find the real and imaginary parts of $\frac{4+2 i}{1-2 i}$.
7. Find the perpendicular distance from the point $(3,2)$ to the line $4 x+5 y+6=0$.
8. Find the equation of the circle with centre $(2,-3)$ and radius 4.
9. Evaluate : $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin \theta}$
10. Differentiate $x^{2} e^{x}$ with respect to x.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$, compute $A^{2}-5 A+6 I$, where I is the unit matrix of order 3 .
(b) Solve the following system of equations by using matrix inversion method :

$$
x+2 y+3 z=6,2 x+4 y+z=7,3 x+2 y+3 z=8
$$

12. (a) If $A+B+C=180^{\circ}$, prove that

$$
\cos 2 A+\cos 2 B+\cos 2 C=-1-4 \cos A \cos B \cos C
$$

(b) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, show that $x y z=x+y+z$.
13. (a) Solve $\sin 5 \theta+\sin \theta=\sin 3 \theta$.
(b) In any triangle $A B C$, prove that if $a \cos A=b \cos B$, then the trianlge is either isosceles or right angled.
14. (a) Find the equation of the parabola whose axis is parallel to x-axis and which passes through the points $(2,0),(0,4)$ and $(-1,2)$.
(b) Find the equation of the ellipse whose focus is $(1,-1)$, directrix is the line $x-y+3=0$ and eccentricity is $\frac{1}{2}$.
15. (a) If $y=(\sin x)(\log x)$, find $\frac{d y}{d x}$.
(b) Find $\frac{d y}{d x}$, if $y=x^{x^{x \ldots \infty \text { terms }}}$.
16. (a) Differentiate $\sin x$ with respect to e^{x}.
(b) If $y=\log \left(x+\sqrt{1+x^{2}}\right)$, then prove that $\left(1+x^{2}\right) y_{2}+x y_{1}=0$.
17. (a) Find the equations of tangent and normal to the curve $y=x^{2}+4 x-10$ at $(2,2)$.
(b) A circular plate of metal expands by heat so that its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. What rate is the surface area increasing when the radius is 2 cm ?
18. (a) A wire of length 40 cm is bent so as to form a rectangle. Find the maximum area that can be enclosed by the wire.
(b) If there is an error of 1% in measuring the side of a square plate, find the percentage error in its area.

