

## C14-C-102/C14-CM-102

### 4015

# BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2016

#### DCE—FIRST YEAR EXAMINATION

#### ENGINEERING MATHEMATICS—I

Time: 3 hours [ Total Marks: 80

#### PART—A

 $3 \times 10 = 30$ 

Instructions: (1) Answer all questions.

- (2) Each question carries **three** marks.
- **1.** Resolve  $\frac{x-1}{(x-2)(x-3)}$  into partial fractions.
- 2 3 1 2 6 2 **2.** If A 0 5 6 and B 4 1 3 , find AB. 2 4 2 6 1 0
- **3.** Using Laplace's expansion, evaluate  $\begin{vmatrix} 2 & 3 & 5 \\ 4 & 1 & 4 \\ 1 & 4 & 1 \end{vmatrix}$ .
- **4.** Prove that  $\frac{\cos 37 + \sin 37}{\cos 37 + \sin 37} = \tan 82$ .
- **5.** Prove that  $\sin x . \sin (60 \ x) . \sin (60 \ x) \frac{1}{4} \sin 3x$ .
- **6.** Find the modulus of the complex number (1 i4)(4 i3).

/**4015** 1 [ Contd...

- **7.** Find the distance between the parallel lines 3x + 4y + 7 = 0 and  $3x \ 4y \ 5 \ 0.$
- **8.** Find the equation of the circle whose centre is (2, 3) and radius is 4.
- **9.** Evaluate Lt  $\frac{n-1}{n}$   $\frac{2n}{n}$ .
- **10.** Differentiate  $x^2 \sin 2x$  with respect to x.

#### PART—B

 $10 \times 5 = 50$ 

**Instructions**: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- **11.** *(a)* Prove that

$$\begin{vmatrix} a & b & 2c & a & b \\ c & b & c & 2a & b \\ c & a & c & a & 2b \end{vmatrix} = 2(a b c)^3$$

(b) Solve the following equations by Crammer's method:

$$\begin{array}{cccccc}
x & 2y & 3z & 6 \\
2x & 4y & z & 7 \\
3x & 2y & 3z & 8
\end{array}$$

- **12.** (a) If A B C 90, then show that tan A tan B tan B tan C tan C tan A 1
  - (b) Solve:

\*

$$\cos^{-1} \frac{1}{1} \frac{a^2}{a^2} \quad \sec^{-1} \frac{1}{1} \frac{b^2}{b^2} \quad 2 \tan^{-1} x$$

/4015 [ Contd...

- **13.** (a) If  $\frac{a}{\cos A} = \frac{b}{\cos B}$ , show that ABC is isosceles.
  - (b) Solve:

$$\cos \sqrt{3} \sin 1$$

- **14.** (a) Find the equation of the parabola whose axis is parallel to the X-axis and which passes through the points (2, 0), (0, 4) and (1, 2).
  - (b) Find the co-ordinates of the centre, vertices, eccentricity, foci, length of the latus rectum of the hyperbola  $\frac{x^2}{16}$   $\frac{y^2}{9}$  1.
- **15.** (a) Differentiate sec  $\frac{1}{1} \frac{1}{2x^2}$  with respect to x.
  - (b) Find  $\frac{dy}{dx}$ , if  $x^2 + y^2 + 3xy = 7$ .
- **16.** (a) If  $y = a \cos(\log x) = b \sin(\log x)$ , then prove that  $x^2y_2 = xy_1 = y = 0$ .
  - (b) If  $u = ax^2 = 2hxy = by^2 = 2gx = 2fy = c$ , then find  $\frac{u}{x}$ ,  $\frac{u}{y}$ ,  $\frac{2u}{x^2}$ ,  $\frac{2u}{y^2}$  where a, b, c f, g, h are constants.
- **17.** (a) Find the equations of tangent and normal to the curve  $y x^2 2x 1$  at the point, where it cuts the X-axis.
  - (b) The displacement of a particle is given at any time by the relation S  $2t^3$   $15t^2$  70. Find its (i) initial velocity, (ii) time when velocity is zero, and (iii) velocity when acceleration is zero.
- **18.** (a) Find two positive numbers, whose sum is 36 and such that the sum of their squares is minimum.
  - (b) Find approximately the value of  $\sqrt{82}$ .

\* \* \*

**/4015** 3 AA6(A)—PDF