4019

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016 DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

$$
\text { Time : } 3 \text { hours] }
$$

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State any three fundamental quantities and give their units in SI system.
2. Find the support reactions for a simply supported beam of span $l=(a+b)$ meters and is loaded with a point load of WN placed at a distance of a meters from the left support. $1 \frac{11 / 2+11 / 2}{}$
3. Two forces 20 kN and 30 kN act at right angles. Determine the magnitude and direction of resultant force.
4. Define the terms centroid and centre of gravity.
5. A masonry dam is trapezoidal in section with one face vertical. The top width is 4 m , bottom width is 10 m and height 12 m . Find the position of centroid from base.
6. Find the moment of inertia of the hollow rectangular section of outer dimensions $180 \mathrm{~mm} \times 120 \mathrm{~mm}$ and inner dimensions $140 \mathrm{~mm} \times 80 \mathrm{~mm}$ about its base.
7. Determine the radius of gyration of a hollow circular section of external diameter 100 mm and thickness 10 mm .
8. Define the terms (a) strain, (b) longitudinal strain and (c) strain energy.
9. Draw the stress strain curve for a ductile material and mention the salient points.
10. Define the terms (a) ductility, (b) brittleness and (c) Poisson's ratio.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. Four forces acting at a point are in equilibrium. Three of them are $400 \mathrm{~N}, 500 \mathrm{~N}$ and 200 N making $45^{\circ}, 90^{\circ}$ and 270° with +ve side of x-axis in the anti-clockwise direction. Calculate the magnitude and direction of the fourth force.
12. (a) State Lami's theorem.
(b) A body of weight 1000 N is suspended by two strings of 4 m and 3 m lengths attached at the same horizontal level 5 m apart. Calculate the forces in the strings.
13. Locate the position of centre of gravity of an I section with the following dimensions from its top :

Top flange $=200 \mathrm{~mm} \times 20 \mathrm{~mm}$
Bottom flange $=300 \mathrm{~mm} \times 10 \mathrm{~mm}$
Web $=400 \mathrm{~mm} \times 10 \mathrm{~mm}$
[Contd...
14. A built-up section is made up of two ISHB $450 \mathrm{~mm} \times 250 \mathrm{~mm}$ RSJs placed at 300 mm centre to centre distance and a flat plate of size $600 \mathrm{~mm} \times 20 \mathrm{~mm}$ connected one at top and another at bottom of the flanges, so that a box section is formed. Find $I_{x x}$ and $I_{y y}$ of the built-up section :
For each RSJ,

$$
\begin{aligned}
& \text { Area }=11789 \mathrm{~mm}^{2} \\
& I_{x x}=40350 \times 10^{4} \mathrm{~mm}^{4} \\
& I_{y y}=3045 \times 10^{4} \mathrm{~mm}^{4}
\end{aligned}
$$

15. (a) State (i) parallel axis theorem and (ii) perpendicular axis theorem.
(b) For a square lamina of sides 12 mm , calculate the moment of inertia about an axis parallel to base and at a distance of 10 mm above the base.
16. Two bars A and B made up of same material and same length 1.2 m are subjected to the same axial load. The area of cross-section of bar A is $600 \mathrm{~mm}^{2}$ for a part of its length and $900 \mathrm{~mm}^{2}$ for the remaining length. The bar B is having an area of cross-section $300 \mathrm{~mm}^{2}$ for its entire length. If the elongation of bar A is 42% of the elongation of bar B, what length of bar A is of $600 \mathrm{~mm}^{2}$ area?
17. A copper rod 30 mm diameter is enclosed within a steel tube of 35 mm internal diameter and 40 mm external diameter. The ends of the rod and the tube are rigidly connected together. If the composite section is heated through $80^{\circ} \mathrm{C}$, what stress will develop in each? Given :

$$
\begin{array}{ll}
\alpha_{s}=6 \times 10^{-6} /{ }^{\circ} \mathrm{C} & E_{s}=200 \mathrm{GPa} \\
\alpha_{c}=10 \times 10^{-6} /{ }^{\circ} \mathrm{C} & E_{c}=120 \mathrm{GPa}
\end{array}
$$

18. A load of 50 kN is suddenly applied on a bar 2 m long and $1000 \mathrm{~mm}^{2}$ in cross-section. What is the maximum instantaneous stress produced? What strain energy is stored, if $E=200 \mathrm{GPa}$?
