c-14-c-105

4019

BOARD DIPLOMA EXAMINATION, (C-14) APRIL/MAY-2015 DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

Time : 3 hours]

Total Marks : 80

PART-A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms (a) Statics, (b) Dynamics and (c) Kinematics. 3
2. Define couple and state any two properties of a couple. $1+2$
3. Calculate the support reactions for the beam given below : 3

4. Differentiate between centre of gravity and centroid. $1 \frac{112}{2}+1 \frac{1}{2}$
5. Find centroid of channel section given below :

6. State parallel axis theorem and perpendicular axis theorem.

$$
1 \frac{1}{2}+1^{11 / 2}
$$

7. Calculate the moment of inertia and minimum radius of gyration of a rectangular section having dimensions $300 \times 600 \mathrm{~mm}$.
8. Define the terms (a) Poisson's ratio, (b) Factor of safety and (c) Modulus of resilience.
9. A steel rod of 30 mm in diameter and 600 mm long has a permissible stress $116 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate (a) the pull required in kN and (b) elongation in mm if $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. $\quad 11 / 2+1 \frac{1}{2}$
10. A steel bar of length 2.5 m and 20 mm dia subjected to a pull of 65 kN . Calculate (a) stress in bar if load is applied suddenly and (b) strain energy in bar. $E=200 \mathrm{kN} / \mathrm{mm}^{2}$. $1^{1 / 2}+1^{1 / 2}$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. (a) State the law of polygon of forces and State Lami's theorem with neat sketch.
(b) Calculate the forces in cables PQ and PR shown in the figure below :

12. Four forces of magnitude $300 \mathrm{kN}, 500 \mathrm{kN}, 400 \mathrm{kN}$ and 600 kN are acting at a point in North 30° East, Due South East, South 30° West and North 30° West. Find the magnitude and direction of resultant force. Also show resultant force in quadrant system.
13. Find the centroid for Z-section shown below :

[Contd...
14. (a) Define Polar moment of inertia of a plane area.
(b) Calculate moment of inertia and polar moment of inertia of the given section below :

15. Find moment of inertia of an unequal angle $150 \times 120 \times 20 \mathrm{~mm}$ about centroidal axes.
16. Define the terms (a) stiffness, (b) hardness, (c) toughness, (d) creep and (e) fatigue with two examples.
17. A bar of 25 mm diameter and 600 mm long is subjected to a pull of 50 kN . The change in diameter and length was observed to be $4 \times 10^{-3} \mathrm{~mm}$ and 0.30 mm . Calculate (a) Young's modulus, (b) Possion's ratio, (c) Modulus of rigidity and (d) Factor of safety if ultimate stress $=204 \mathrm{~N} / \mathrm{mm}^{2}$. $\quad 2^{1 ⁄ 2} \times 4$
18. A composite bar 30 mm diameter and 600 mm long made of steel is enclosed in a brass tube having external diameter 60 mm and 8 mm thick. If temperature is raised to $80^{\circ} \mathrm{C}$, then calculate the stresses induced in each material.
Take $\alpha_{s}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{b}=19 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $E_{s}=200 \mathrm{GPa}$, $m=\frac{1}{2}$

