c14-c-105

4019

BOARD DIPLOMA EXAMINATION, (C-14) MARCH /APRIL-2019 DCE - FIRST YEAR EXAMINATION
 ENGINEERING MECHANICS

Time: 3 Hours
Max.Marks:80

PART-A

Instructions : 1) Answer all questions. Each question carries three marks.
2) Answer should be brief and straight to the point and shall not exceed five simple sentences

1) Write the units in SI System for the quantities given below.
a) momentum
b) section modulus
c) Luminous intensity
2) List the characteristics of a force.
3) Define couple and write the properties of couple.
4) Define centroid and centre of gravity.
5) Write the formula for centroid of the following figures.
a) Hemisphere
b) Right circular cone
c) Cylinder
6) (a) Define polar moment of inertia.
(b) Find the polar moment of inertia of circle, diameter ' d '.
7) Calculate the moment of inertia of an hollow circular section whose external diameter is 50 mm and internal diameter is 40 mm .
8) Define a) Stress b) Strain c) Poisson's ratio
9) Define a) Modulus of resilience b) Toughness c) Bulk modulus
10) The modulus of elasticity and modulus of rigidity of the material is $250 \mathrm{kN} / \mathrm{mm}^{2}$ and $100 \mathrm{kN} / \mathrm{mm}^{2}$. Find bulk modulus.

WWW.MANARESULTS.CO.IN

PART-B

$5 \times 10=50 M$

Instructions: 1) Answer any five questions.
2) Each question carries ten marks.
3) The answer should be comprehensive and the criteria for valuation is content but not the length of the answer.
11) A simply supported beam of span $4 m$ carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ entire span and point load of 8 kN acting at distance 1 m from left end. Find the reactions at support.
12) a) State the parallelogram law of forces with neat sketches.
b) A body is acted upon by upward force of 100 N and a horizontal force of 200 N . Find the magnitude and direction of the resultant.
13) Determine the position of centroid above the base of the built-up I section with top plate $200 \times 20 \mathrm{~mm}$; top flange $120 \times 40 \mathrm{~mm}$; web $160 \times 20 \mathrm{~mm}$; bottom flange $200 \times 40 \mathrm{~mm}$;
14) Find the moment of inertia of a rectangle 60 mm wide and 120 mm deep about its centroidal axis. Find also the least radius of gyration.
15) A built up section is formed by an I section and two flange plate of size $280 \times 20 \mathrm{~mm}$ on each flange. Find the Moment of Inertia about centroidal axis XX and YY.

16) (a) A load of 600 N applied on a steel wire of diameter 4 mm and length 2 m . Calculate the strain energy stored in the material if the load is applied gradually.
(b) If the same load is suddenly applied, calculate the strain energy absorbed $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
17) A copper rod 35 mm diameter is enclosed within a steel tube of 40 mm dia internal and 45 mm dia external. The ends of the rod and tube are rigidly connected together. If the composite section is heated through $80^{\circ} \mathrm{C}$, what strees will be developed in each?
$\alpha_{\mathrm{s}}=6 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{\mathrm{c}}=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa} \mathrm{E}_{\mathrm{c}}=120 \mathrm{GPa}$.
18) The modulus of rigidity of a material is 30 GPa . A 8 mm diameter rod of that material is subjected to an axial tensile force of 4 kN and the change in its diameter is observed to be 0.002 mm .
Calculate the poisson's ratio and modulus of elasticity of the material.

