c14-c-105

4019

BOARD DIPLOMA EXAMINATION, (C-14) JUNE-2019

DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS
Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the following terms :
(a) Statics
(b) Dynamics
2. What is couple? List the properties of couple.
3. Differentiate tension and compression.
4. State (a) parallel axis theorem and (b) perpendicular axis theorem.
5. A masonry dam is 12 m height on the water face and is vertical. The top width is 4 m , and base width is 6 m . Find the centre of gravity of the dam.
6. Define the following terms :
(a) Moment of inertia
(b) Radius of gyration
7. The moment of inertia of triangular lamina about its base is $195 \times 10^{4} \mathrm{~mm}^{4}$ units. Find moment of inertia of this triangle about an axis parallel to its base and passing through the cenroid.
8. Explain the following terms :
(a) Modular ratio
(b) Poisson's ratio
9. Write the relationship among the elastic constants.
10. Differentiate between (a) toughness and hardness, (b) brittleness and stiffness.
PART-B

$$
10 \times 5=50
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Four forces acting at a point are in equilibrium. Three of them are 300 N due South, 100 N due North-East, 400 N at 30° East of South. Calculate the magnitude and direction of fourth force.
12. A lighting fixture weighing 25 N hangs from a point R by two strings $P R$ and $Q R$. $P R$ is inclined at 60° to the horizontal and $Q R$ at 30° to vertical as shown in the Fig. 1. Calculate the forces in the strings using Lami's theorem.

Fig. 1

Determine the position of centroid of the channel section given in the Fig. 2.

Fig. 2
13. Find the moment of inertia about horizontal and vertical axes passing through centroid for a rolled steel T-section, whose size of flanges $240 \mathrm{~mm} \times 40 \mathrm{~mm}$ and size of Web is $20 \mathrm{~mm} \times 200 \mathrm{~mm}$.
14. Determine the moment of inertia of an angle section $120 \mathrm{~mm} \times 100 \mathrm{~mm} \times 12 \mathrm{~mm}$ about $x x$ and $y y$ axis passing through it CG. Take 120 mm as base.
15. A steel bar 25 mm diameter is acted upon by forces as shown in the Fig. 3. Find the total elongation in the bar take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. 3
16. A copper bar 40 mm diameter is rigidly attached at both ends to the inside of steel tube of 50 mm external diameter and 5 mm thick. find the stress in each metal of composite section length of 1000 mm , when it is subjected to an axial load of 200 kN . Take $E_{s}=200 \mathrm{GPa}$ and $E_{c}=100 \mathrm{GPa}$.
17. An axial pull of 150 kN is suddenly applied to a steel rod 50 mm in diameter and 2 m long. Find (a) work done, (b) maximum instantaneous elongation and (c) also calculate the strain energy stored. Take $E=2 \cdot 1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
18. Two parallel plates placed 3 m apart are joined by a steel rod of 30 mm diameter at a temperature of $120^{\circ} \mathrm{C}$ passing through washers and nuts at each end. Calculate the stress induced in the rod when it has cooled to $80^{\circ} \mathrm{C}$. If (a) the end do not yield and (b) when the end yield by 0.25 mm $E=1.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, and $@=2 \times 10^{-6}{ }^{\circ} \mathrm{C}$.

