4019

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2016 DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms (a) mechanics, (b) dynamics and (c) statics.
2. By resolving the force of 100 N acting at an angle of 30° with the horizontal, find its horizontal and vertical components.
3. Draw neat sketches of any three types of beams.
4. Define the terms (a) centroid and (b) centre of gravity.
5. Locate the centre of gravity for a T-section of top flange $100 \mathrm{~m} \times 20 \mathrm{~mm}$ and web $80 \mathrm{~mm} \times 20 \mathrm{~mm}$.
6. The moment of inertia of a square about its base is $400 \mathrm{~mm}^{4}$. Find the values of $I_{x x}, I_{y y}$ and $I_{z z}$ for the square.
7. Determine the polar moment of inertia of a hollow circular section of internal diameter 100 mm and thickness 10 mm .
8. Define the terms (a) stress, (b) working stress and (c) factor of safety.
9. The length of a steel rod is 2 meters at $30^{\circ} \mathrm{C}$. What will be the length of the rod when the temperature is raised to $100^{\circ} \mathrm{C}$, if it is free to expand? Take, the coefficient of thermal expansion of steel as $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
10. Define the terms (a) elasticity, (b) stiffness and (c) hardness.

> PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) A weight of 800 N is suspended by two strings of 4 m and 3 m lengths, attached at the same horizontal level, 5 m apart. Find the tensions in the strings.
(b) Find two forces, one horizontal and the other inclined at 60° to the vertical, whose resultant is a vertical force of 100 N .
12. A simply supported beam of span 10 m is loaded with 3 point loads of $20 \mathrm{kN}, 6 \mathrm{kN}$ and 2 kN placed at $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m respectively from the left support. In addition it also carries a udl of $5 \mathrm{kN} / \mathrm{m}$ in a length of 4 m from the right support towards left. Determine the support reactions for the beam. 5+5
13. Find the position of centre of gravity of an unequl angle section of size $150 \mathrm{~mm} \times 100 \mathrm{~mm} \times 20 \mathrm{~mm}$ with its longer leg vertical and shorter leg horizontal and placed at the bottom.
14. Calculate the values of $I_{x x}$ and $I_{y y}$ for an I-section with the following dimensions :

Top flange $=120 \mathrm{~mm} \times 12 \mathrm{~mm}$
Web $=12 \mathrm{~mm} \times 160 \mathrm{~mm}$
Bottom flange $=200 \mathrm{~mm} \times 12 \mathrm{~mm}$
[Contd...
15. A built-up section consists of two channels ISLC 300 placed back-to-back at 100 mm clear distance, with a cover plate $300 \mathrm{~mm} \times 20 \mathrm{~mm}$ connected one to each flange. Determine the radius of gyration of the section about the horizontal and vertical centroidal axes :

For each channel

$$
\begin{aligned}
& A=4210 \mathrm{~mm}^{2} \\
& I_{x x}=60 \cdot 5 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{y y}=3.46 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Distance of CG from back of web- 25.5 mm .
16. A steel bar of rectangular section $25 \mathrm{~mm} \times 10 \mathrm{~mm}$ and 3 m long has to transmit an axial pull of $P \mathrm{kN}$. If the tensile stress in the material is not to exceed 150 MPa and the elongation is limited to 1.2 mm , determine the maximum value of P, satisfying both the conditions. Take, $E=200 \mathrm{GPa}$.
17. A cylindrical bar is 20 mm in diameter and 1.2 m long. During a tension test it is found that the longitudinal strain is 4 times the lateral strain. Calculate the shear modulus and bulk modulus, if the bar elongates by 0.06 mm under an axial tensile load of 50 kN .
18. An unknown weight falls through 10 mm on a collar rigidly attached to the lower end of a vertical bar 3 m long and $36 \mathrm{~mm}^{2}$ in section. If the maximum instantaneous extension is known to be 2 mm , what is the corresponding stress and the value of the unknown weight? Take, $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

