C14-c-302

4226

BOARD DIPLOMA EXAMINATION, (C-14)
MARCH /APRIL-2019
DCE - THIRD SEMESTER EXAMINATION MECHANICS OF SOLIDS

Time: 3 Hours]
[Max. Marks : 80
PART-A

$$
10 \times 3=30 \mathrm{M}
$$

Instructions: 1) Answer all the questions. Each question carries Three marks.
2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1) Draw the neat sketch of simply supported beam, fixed beam and cantilever beam.
2) Define Shear Force and Bending Moment.
3) Calculate the maximum SF and Maximum BM of a simply supported beam of span 6.0 m subjected to u.d.I of $5 \mathrm{kN} / \mathrm{m}$ acting throughout the span.
4) Write the expression for section modulus of a Hollow circular section of external diameter ' D ' and internal diameter' d '.
5) Draw the sketches for shear stress distribution across'Rectangular' and 'Circular' sections showing their maximum values.
6) Define Neutral Axis and Flexural Rigidity.
7) Define Slope and Deflection.
8) The maximum slope of a Simply supported beam of span 4.0 m subjectd to mid point load is 2^{0}. Claculate maximum deflection.
9) Write the formula for maximum slope and deflection of a cantilever beam of length L, carrying a concentrated load W at free end.

Instructions: 1) Answer any five questions.
2) Each question carries ten marks.
3) Answers should be comprehensive and the critertion for valuation is the content but not the length of answer.
11) A cantilever 3 m long is subjected to three point loads $30 \mathrm{kN}, 25 \mathrm{kN}$ and 15 kN at $1.0 \mathrm{~m}, 2.0 \mathrm{~m}$ and 3.0 m from the fixed end. Draw the SFD and BMD for ther beam indicating their salient values.
12) A beam of length 7.0 m is simply supported on a span of 5 m , with a overhang of 2.0 m in the right hand portion. It carries an udl of $10 \mathrm{kN} / \mathrm{m}$ on a length of 5 m from L.H.S and a point load of 25 kN at 7.0 m from L.H.S. Draw the SF and BM diagrams.
13) A rectangular beam of breadth 240 mm and depth 480 mm is simply supported over a span of 7 m . Find the max. udl the beam can carry if the bending stress is limited to $17 \mathrm{~N} / \mathrm{mm}^{2}$.
14) A rectangular beam is simply supported over a span of 5 m subjected to ud1 of $25 \mathrm{kN} / \mathrm{m}$ throughout the span. If the bending stres is limited to $15 \mathrm{~N} / \mathrm{mm}^{2}$. Design a suitable rectangular beam, if $\mathrm{b}=0.6 \mathrm{~d}$.
15) A Cantilever beam of length 3.5 m is subjected to two point loads 25 kN and 30 kN acting at 2.0 m and 3.5 m from fixed end. Find maximum slope and deflection. Take EI=8000kN-m².
16) A simply supported beam of span 5.0 m subjected to a point load of 40 kN at 2.0 m from L.H.S. Find the value of maximum deflection. Take EI=6500kN-m².
17) A thin cylinder of length 2.0 m , internal diameter 500 mm and wall thickness 15 mm is subjected to an internal fluid pressure of $5 \mathrm{~N} / \mathrm{mm}^{2}$. If $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poisson's ratio ($1 / \mathrm{m}$) is 0.3 find Hoop stress, longitudinal stress, change in length, change in diameter and change in volume.
18) Calculate maximum torque transmitted by a soild circular shaft of 250 mm diameter, if safe allowable shear stress is $50 \mathrm{~N} / \mathrm{mm}^{2}$ and $\underset{\star}{m a x i m u m}$ angle of twist is 0.3% length of the shaft. The modulus of rigidity of the shaft material $\mathrm{G}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. WW . IN

