c14-c-303

4227

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH/APRIL-2016
 DCE-THIRD SEMESTER EXAMINATION

HYDRAULICS

Time : 3 hours]
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Determine the minimum diameter of the glass tube if the capillary rise in the glass tube is not to exceed 0.2 mm of water. [Take surface tension of water (σ) as $0.0725 \mathrm{~N} / \mathrm{m}$]
2. Define the following :
(a) Gauge pressure
(b) Vacuum pressure
3. Define the following :
(a) Steady flow
(b) Uniform flow
(c) Laminar flow
4. An internal mouthpiece of 100 mm diameter is discharging water under a constant head of 4 m . Find the discharge through the mouthpiece if running full. [Take $C_{d}=0 \cdot 707$]
[Contd...
5. Define the following :
(a) Velocity of approach
(b) End contraction
6. What is Cipolletti weir? Give the equation for discharge of it.
7. What is total energy line (TEL) in a pipe flow?
8. A rectangular channel has $50 \mathrm{~m}^{2}$ area. If the channel section is to be most economical, calculate the bed width and depth.
9. State any three main parts of a Francis turbine.
10. Sketch a typical hydroelectric installation and name the parts.

PART—B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. The end gates of a lock are of 10 m height at an included angle of 120° when closed. The width of the lock chamber is 6 m and each gate is supported on two hinges placed at 500 mm from the top and bottom of the gate. If the water levels are 6 m and 4.2 m on upstream and downstream side respectively, determine the magnitudes of forces on the hinges due to water pressure.
12. (a) Write any three assumptions of Bernoulli's equation. 3
(b) A pipe of 0.3 m diameter carries an oil of specific gravity 0.9 at the rate of $120 \mathrm{lit} / \mathrm{sec}$. The pressure at a point A in the pipe is $24.5 \mathrm{kN} / \mathrm{m}^{2}$ (gauge pressure). If the point A is 5 m above the datum line, calculate the total head (in metres) of oil.
13. (a) Define coefficient of contraction.
(b) Water flows through a circular orifice of 2.5 mm diameter provided in the side of a tank under a constant head of 800 mm . The coordinates at a certain point of the jet are 300 mm from the vena contracta horizontally and 32 mm vertically below the centerline of the orifice. The water is collected in a tank of size $600 \mathrm{~mm} \times 600 \mathrm{~mm}$ and collected. The water level in the collecting tank rises by 33 mm in 10 seconds. Find C_{c}, C_{v} and C_{d}.
14. A broad crested weir 20 m long has a head of 700 mm over the crest. The width of approach channel is 40 m and its depth below the crest of weir is 600 mm . Calculate the discharge over the weir-
(a) by considering velocity of approach;
(b) by neglecting velocity of approach.
[Take C_{d} as 0.95]
15. Water flows through a pipe 200 mm diameter, 60 m long with a velocity of $2.5 \mathrm{~m} / \mathrm{sec}$. Find the head loss in friction using (a) Darcy's formula and (b) Chezy's formula. Assume Chezy's constant as 55.
16. (a) Find the diameter of uniform pipe to replace a compound pipeline having the following elements :
(i) 1000 m of 500 mm diameter
(ii) 500 m of 400 mm diameter
(iii) 250 m of 300 mm diameter
(b) Define the following :
(i) Depth of flow
(ii) Wetted perimeter
(iii) Wetted area
(iv) Hydraulic radius
(v) Hydraulic depth
17. A trapezoidal channel carrying water has bottom width of 4 m and side slopes of 1 horizontal to 2 vertical. If the bed slope of the channel is 1 in 500, find the discharge through the channel. Assume Manning's $n=0.03$ in Manning's formula if depth of flow is 3.2 m .
18. Distinguish between centrifugal pump and reciprocating pump.

