4227
 BOARD DIPLOMA EXAMINATION, (C-14) MARCH /APRIL-2019 DCE - THIRD SEMESTER EXAMINATION HYDRAULICS

Time: 3 Hours] [Max. Marks: 80
PART-A
$10 \times 3=30 \mathrm{M}$
Instructions: 1) Answer all the questions. Each question carries three marks.
2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1) At a point in a layer of oil, the shear stress is $0.2 \mathrm{~N} / \mathrm{m}^{2}$ and velocity gradient is $0.25 \mathrm{~m} / \mathrm{sec} / \mathrm{m}$. Calculate the coeffient of dynamic viscosity.
2) What is a Piezometer? What are its limitations?
3) What is uniform flow and non-uniform flow? Give one example to each.
4) State the classification of mouthpieces according to shape .
5) A broad crested weir 10 m long has a maximum discharge of $10 \mathrm{~m}^{3} / \mathrm{sec}$. Determine the head of water on the upstream side of weir.

Take $\mathrm{C}_{\mathrm{d}}=0.62$.
6) What is a notch? Classify the notches based on the shape of opening.
7) State the Darcy-Weisbach equation for head loss due to friction in pipes and name the terms.
8) Differentiate between pipe flow and channel flow in any three aspects.
9) Write any three functions of draft tube.
10) Sketch a typical layout of hydro-electric power plant installation.

Instructions: 1) Answer any five questions.
2) Each question carries ten marks.
3) Answers should be comprehensive and the critertion for valuation is the content but not the length of answer.
11) A rectangular body $2 m \times 4 m$ is immersed inclined to free surface of liquid such that the greatest and least heights are 3 m and 1 m respectively. Calculate a) total pressure and b) centre of pressure.
12) Water is flowing through a horizontal tapering pipe $A B$ with a discharge of 0.5 cumecs. The diameters at A and B are 300 mm and 600 mm respectively. If the presure at ' A ' is 7 m of water, find the pressure at ' B ' neglecting the losses.
13) Derive an expression for the discharge through a large rectangular orifice.
14) The catchment area of a tank is $5 \times 10^{6} \mathrm{~m}^{2}$. The maximum rainfall in the catchment is 50 mm per hour. Out of this 80% will reach the tank. Find the length of the weir if the head of water is not to exceed 1 m . The piers are 1 m wide and clear span is 5.0 m between piers for supporting a superstructure.
15) Two reservoirs are connected by a straight pipe 1.6 Km long. For the first half of its length, it is 160 mm diameter and then suddenly reduced to 80 mm dia. the water leves in the two reserviors differ by 30 m . Tabulate all the losses of head and determine the flow in lit/sec. Take $f=0.01$ and coefficient of contraction $=0.62$.
16) (a) A horizontal pipe of diameter 500 mm is suddenly contracted to a diameter of 250 mm . If the discharge throughe the pipe is 270 lit/sec, find the practical loss of head due to sudden contraction of pipe.
(b) A rectangular channel 4 m wide and 2 m deep is laid at a slope of 1 in 2000. Find the discharge using Kutter's formula taking $N=0.01$.

*

WWW.MANARESULTS.CO.IN
17) A trapezoidal channel has side slopes $2 \mathrm{~V}: 3 \mathrm{H}$. It is discharging water at the rate of 25 cumecs with a bed slope 1 in 2000. Design the channel for its best form. Use Manning's formula taking $n=0.01$.
18) Compare the centrifugal pump with reciprocating pump on different aspects.

