4427

BOARD DIPLOMA EXAMINATION, (C-14) JUNE-2019

DCE - FOURTH SEMESTER EXAMINATION
 SURVEYING - III

Time: 3 Hours Max.Marks: 80

PART-A

$10 \times 3=30 \mathrm{M}$
Instructions: 1) Answer all questions. Each question carries three marks.
2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1) In order to determine the RL of top of tower, the theodolite was set up at a distance of 50 m from its base. the vertical angle measured to the top of the tower was $15^{\circ} 30^{\prime}$. The back sight taken on a nearby bench mark of RL 100.000 m was 1.250 m . Determine RL of top of the tower.
2) State the principle of Tacheometry.
3) Enumerate the differences between stadia and tangential tacheometries
4) State the expression for (i) tangent length, (ii) curve length and (iii) length of long chord of a curve of radius R and deflection angle ϕ.
5) Define the terms (a) Point of curve, (b) Point of Tangency
6) State any two uses of each (i) Electronic theodolite and (ii) Distomat
7) List the types of data used in GIS
8) List out the three segments of GPS
9) List any three parts of Total Station and State their functions
10) What is meant by Resection? State the types of resection carried out using total station.

PART-B

$$
5 \times 10=50 M
$$

Instructions: 1) Answer any five questions. Each question carries ten marks.
2) Answers should be comprehensive and the critertion for valuation is the content but not the length of answer
11) Determine the elevation of top of chimney (A) from the following observations.

Instrument at	Sight to	Vertical angle	Staff Reading on $B M(m)$	Remarks
P	A	$19^{\circ} 48^{\prime}$	2.625	RL of $\mathrm{BM}=150.000 \mathrm{~m}$
Q	A	$14^{0} 25^{\prime}$	1.510	Distance $\mathrm{PQ}=50 \mathrm{~m}$
$\mathrm{~A}, \mathrm{P}$ and Q are in same vertical Plane				

12) Find the RL of church spire C from the following observations taken from two stations A and $B, 50 \mathrm{~m}$ apart. Angle $B A C=60^{\circ}$: Angle $A B C=50^{\circ}$: Angle of elevation from A to the top of Spire " $C^{\prime \prime}=30^{\circ}$: angle of elevation from B to Sprie "C" $=29^{\circ}$; Staff readings taken on BM of RL 120.00 m from A and B are 3.500 m and 1.490 m respectively.
13) (a) What is meant by tacheometry? List the instruments used for tacheometry
(b) Two distances of 50 m and 300 m were accurately measured on a fairly level ground. The intercepts on a vertically held staff were 1.490 m and 3.990 m respectively. Calculate the tacheometric constants of the instrument.
14) A tacheometer fitted with anallatic lense was set up at an intermediate station C on the line $A B$ and following readings were obtained.

Instrument at	Staff Station	Vertical Angle	Hair Readings
C	A	$5^{\circ} 20^{\prime}$	$2.250,3.000,3.750$
	B	$3^{\circ} 40^{\prime}$	$1.450,1.850,2.250$

Determine the length of line $A B$ and also $R L$ of B, if $R L$ of $A=500.000 \mathrm{~m}$. Multipying constant=100 and additive constant=0.
/4427 WWW.manaresults.Co.in [Contd....
15) (a) Draw the neat sketch of simple curve and show the components (b) Calculate the necessary data to set out a circular curve of radius 100 m and deflection angle 30° by the method of perpendicular offsets from tangent (take interval $=5 \mathrm{~m}$).
16) Two tangents intersect at a point B of chainage 410 m . The deflection angle being 38°. Calculate the data for setting out a simple circular curve of radius 300 m by Rankine's method of deflection angles with a peg interval of 30 m . Also prepare the table if theodolite used was having 20" least count.
17) Explain how traversing is done using Total Station.
18) (a) State any six applications of GIS in civil Engineering
(b) Write a short note on Electronic theodolite

