C14-C-404

4427

BOARD DIPLOMA EXAMINATION, (C-14)
OCT/NOV-2018
DCE—FOURTH SEMESTER EXAMINATION
SURVEYING-III
Time : 3 Hours]
[Total Marks : 80

PART—A

Instruction: (1) Answer all questions. Each question carries three marks.
(2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State different cases which come under trigonometrical levelling.
2. State the principle of Tacheometry.
3. What is anallactic lens? State the advantages of using anallactic lens in tacheometer.
4. List out the different types of horizontal curves.
5. Define the terms
(a) Point of curve
(b) Point of Tangency
6. State the principle of EDM equipment.
7. List out the three segments of GPS.
8. State any three uses of Total Station.
9. State any six components of Total Station.
10. Define GIS.

Instruction: (1) Answer any five questions and each question carries ten marks.
(2) Answers should be comprehensive and the criteria for valuation is the content but not the length of the answers.
11. Determine elevation of top of tower (A) from the following observations.

Instrument at	Sight to	Vertical angle	Staff Reading on BM (m)	Remarks
P	A	$18^{\circ} 20^{\prime}$	1.650	RL of BM $=150.000 \mathrm{~m}$
Q	A	$10^{\circ} 40^{\prime}$	1.550	Distance $\mathrm{PQ}=20 \mathrm{~m}$ $\mathrm{~A}, \mathrm{P}$ and Q are in same vertical plane

12. Find the RL of church spire C from the following observations taken from two stations A and B, 50 m apart. Angle $\mathrm{BAC}=60^{\circ}$: Angle $\mathrm{ABC}=50^{\circ}$: Angle of elevation from A to the top of Spire "C" $=30^{\circ}$: angle of elevation from B to Spire "C" $=29^{\circ}$; Staff readings taken on BM of RL 20.00 m from A \& B are 2.500 m and 0.490 m respectively.
13. (a) State any three disadvantages of tangential tacheometry.
(b) Two distances of 50 m and 300 m were accurately measured on a fairly level ground. The intercepts on a vertically held staff were 0.490 m and 2.990 m respectively. Calculate the tacheometric constants of the instrument.
14. A tacheometer fitted with anallactic lens was set up at an intermediate station C on the line AB and the following readings were obtained

Instrument at	Staff Station	Verticai Angle	Hair Readings
C	A	$5^{\circ} 20^{\prime}$	$1.750,2.500,3.250$
	B	$3^{\circ} 40^{\prime}$	$0.950,1.350,1.750$

Determine the length of line AB and also RL of B , if RL of $\mathrm{A}=500.000 \mathrm{~m}$. Multiplying constant $=100$ and additive constant $=0$.
15. (a) List out the methods of curve setting in field.
(b) Calculate the necessary data to set out a circular curve of radius 100 m and deflection angle 30° by the method of offsets from long chord (take interval $=5 \mathrm{~m}$).
16. Two tangents intersect at a point B of chainage 380 m . The deflection angle being 36°. Calculate the data for setting out a simple circular curve of radius 300 m by Rankine's method of deflection angles with a peg interval of 30 m . Also prepare the table if theodolite used was having 20 " least count.
17. Explain how traversing is done using Total Station.
18. (a) State any five applications of GPS in Civil Engineering.
(b) Explain briefly the types of terrestrial photogrammetry.

