c14-c-407

4429

BOARD DIPLOMA EXAMINATION, (C-14) MARCH / APRIL-2016 DCE-FOURTH SEMESTER EXAMINATION BUILDING SERVICES DRAWING

Time : 3 hours]
Total Marks : 60

PART—A $4 \times 5=20$

Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.

1. Draw the plan of dispersion trench. Assume any data necessary.
2. Draw the plan of harvesting pit.
3. Draw the wiring diagram for the connection to 3-phase motor.
4. Draw the conventional signs for the following items of electrical engineering :
(a) Television receiving set
(b) Electric unit heater
(c) Light plug
(d) Control board
5. Draw the line diagram for a solar water heater.

Instructions : (1) Answer all questions.
(2) Each question carries twenty marks.
(3) The drawing must be to the scale.
(4) Any missing data may be assumed suitably.
6. Draw the plan and longitudinal section of a septic tank to a scale of 1:20 from the given specifications :

Internal dimensions $=900 \mathrm{~mm} \times 2750 \mathrm{~mm}$
Brick masonry wall thickness $=230 \mathrm{~mm}$
Thickness of CC bed $=500 \mathrm{~mm}$
CC offset for masonry walls $=300 \mathrm{~mm}$
Depth of water $=1000 \mathrm{~mm}$
Free board $=300 \mathrm{~mm}$
RCC roof panels $=100 \mathrm{~mm}$ thick and 450 mm wide fitted with bent handles for lifting
Scum board $=$ RCC precast slab 75 mm thick fixed at a height of 300 mm from floor level and extending up to a height of 150 mm below roof. This shall be fixed at a distance of 900 mm from inside of wall at inflow end into a groove of 75 mm depth.
Standing baffle $=$ RCC precast slab 75 mm thick kept on floor at a distance of 600 mm from inside of wall at outflow end. The top of baffle shall be 150 mm below water level.
Inflow and outlet pipe $=100 \mathrm{~mm}$ dia. Tee shaped pipes.
Vent pipe $=50 \mathrm{~mm}$ dia. AC pipe with a cowl extending to a height of 2.0 m above GL.

Masonry pedestal $=450 \mathrm{~mm}$ dia. Circular brick masonry pedestal shall be provided around the vent pipe up to GL.
7. Draw the sectional elevation of a lift shaft for multistoried building with a suitable scale :

Depth of pit $=1.3 \mathrm{~m}$
Floor to floor height $=3.0 \mathrm{~m}$
Top floor height $=2 \cdot 1 \mathrm{~m}$
[Contd...

RCC slab thickness $=200 \mathrm{~mm}$
RCC wall thickness $=150 \mathrm{~mm}$
Size of machine room $=2 \cdot 25 \mathrm{~m} \times 2 \cdot 135 \mathrm{~m}$
Size of lift car inside $=900 \mathrm{~mm} \times 1100 \mathrm{~mm}$
Size of room $=1500 \mathrm{~mm} \times 1800 \mathrm{~mm}$
No. of floors $=5$
Lift entrance $=760 \mathrm{~mm}$

