

4620

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017

DCE-FIFTH SEMESTER EXAMINATION

QUANTITY SURVEYING-II

Time : 3 hours]
[Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Any data missing may be assumed suitably.

1. State the types of half-turn staircases and draw the rough plan not to scale and show their component parts rough plans only.
2. Calculate the length of a steel rod of 12 mm diameter used in one way slab, given the clear span of slab is 3.2 m , width of supports is 230 mm , thickness of slab is 130 mm and the rod is cranked on one side only. Assume 20 mm cover.

3. Calculate the length of a stirrup of 6 mm diameter for a column of size $300 \mathrm{~mm} \times 300 \mathrm{~mm}$. Assume 25 mm clear cover for main reinforcement :

4. What is a standard data book?
5. Calculate the cement required in bags for $C C(1: 5: 10)$ using 40 mm HBG metal for $25 \mathrm{~m}^{3}$ work.
6. Calculate the quantity of cement required in bags for plastering work with $\mathrm{CM}(1: 4), 12 \mathrm{~mm}$ thick for $40 \cdot 00 \mathrm{sq} . \mathrm{m}$, if $0.15 \mathrm{~m}^{3}$ of CM is required for $10 \mathrm{~m}^{2}$ of plastering.
7. Prepare the detailed estimate for the earthen road of length 100 m of top width 7.5 m and bottom width 8.5 m , height of embankment 0.5 m from the ground.
8. Prepare the detailed estimate of gravel layer of compacted thickness of 150 mm (loose thickness 225 mm) over the already formed earthen road. The width of gravel layer is 4.0 m and length is 600 m .
9. Calculate of quantity of masonry in steining of the following for soak pit :

10. The size of the sum board of a septic tank are $1 \mathrm{~m} \times 0 \cdot 75 \mathrm{~m} \times 0 \cdot 10 \mathrm{~m}$. Calculate the quantity of plastering.

$$
\text { www. ManaResults.co.in }{ }^{\text {[Contd... }}
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Any data missing may be assumed suitably.
11. Prepare a detailed estimate for the following items for a staircase as shown in the figure below :
(a) RCC 1:2:4 f waist slab and landing
(b) Brick masonry in CM 1:6 for steps
(c) Plastering with CM 1:5 for steps

12. Calculate the quantity of steel in $R C C$ square column and footing. Details as shown in the figure below. Size of base $1.00 \mathrm{~m} \times 1.00 \mathrm{~m} \times 0.23 \mathrm{~m}$. Details the reinforcement.
(a) Mat reinforcement- 10 mm diameter bars at 10 cm centre-tocentre in the both sides
(b) 12 mm diameter of vertical bars 4 no's one no. at each corner with sufficient holding into the base reinforcement length of dowel bars is 600 mm
(c) 6 mm diameter ties as 15 cm centre-to-centre
(d) The size of the column is $0.23 \mathrm{~m} \times 0.23 \mathrm{~m}$

Covers : 30 mm for all bars

13. Prepare a data sheet and calculate the cost of the items given below :
(a) Cement concrete (1:4:8)using 40 mm HBG metal- $1 \mathrm{~m}^{3}$
(b) RR masonry in $\mathrm{CM}(1: 6)-1 \mathrm{~m}^{3}$

Materials and labour required for $1 \mathrm{~m}^{3}$:

$(1: 4: 8)$	RR Masonry in CM (1:6)
$0.92 \mathrm{~m}^{3} \mathrm{HBG}$ metal	$1.10 \mathrm{~m}^{3}$ rough stone
$0.48 \mathrm{~m}^{3}$ sand	$0.34 \mathrm{~m}^{3} \mathrm{CM} \mathrm{(1:6)}$
$0 \cdot 115 \mathrm{~m}^{3}$ cement	1.8 nos. mason
0.2 nos. mason 1st class	2.8 nos. mazdoors
3.2 nos. mazdoors	LS sundries
LS sundries	

Lead statement of material :

Sl. No.	Materials	Rate (in ₹)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	$1,100 \cdot 00$	$1 \mathrm{~m}^{3}$	10 km MR	$₹ 2$ per 1 km
2	Sand	400.00	$1 \mathrm{~m}^{3}$	8 km MR	$₹ 2$ per 1 km
3	Rough stone	16.50	$1 \mathrm{~m}^{3}$	5 km MR	$₹ 3$ per 1 km
4	Cement	$1,200 \cdot 00$	1 tonne	At site	

Labour charges per day :
(1) Mason 1 class $=₹ 500$
(2) Mason 2 class $=₹ 450$
(3) Mazdoor = ₹ 300
(4) Hand mixing charges of CM per $\mathrm{m}^{3}=₹ 80$
14. Prepare a data sheet and calculate the cost of the items given below using lead statement.
(a) Cement concrete (1:3:6) using 40 mm HBG metal-m ${ }^{3}$
(b) Brick masonry in $\mathrm{CM}(1: 6)-1 \mathrm{~m}^{3}$

Materials and labour required for $1 \mathrm{~m}^{3}$:

$$
\text { CC }(1: 3: 6)
$$

$0.92 \mathrm{~m}^{3}$ HBG metal 40 mm size
$-m^{3}$ sand
_ m^{3} cement
0.2 nos. mason
1.4 nos. women mazdoors

LS sundries

Brick masonry in CM (1:6)
512 nos. bricks
$0.20 \mathrm{~m}^{3} \mathrm{CM}(1: 6)$
1.40 nos. mason
$0 \cdot 70$ nos. man mazdoors
$2 \cdot 10$ nos. woman mazdoors
LS sundries

Lead statement of material :

Sl. No.	Materials	Rate (in ₹)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	$306 \cdot 70$	$1 \mathrm{~m}^{3}$	15 km	$₹ 4$ per 1 km
2	Sand	$75 \cdot 00$	$1 \mathrm{~m}^{3}$	9 km	$₹ 3$ per 1 km
3	Bricks	$1,200 \cdot 00$	1000 nos.	12 km	$₹ 3$ per 1 km
4	Cement	$3,400 \cdot 00$	1 MT	local	

Labour charges per day :
Mason $=₹ 166$ per day
Man mazdoor $=₹ 116$ per day
Woman mazdoor $=₹ 106$ per day
Scaffolding charges $=₹ 35$ per m^{3}
Mixing charges for $C M(1: 6)$ per $\mathrm{m}^{3}=₹ 30 \cdot 00$ per m^{3}
15. Prepare the detailed estimate of water bound macadam road of length 1 km with the details shown in the figure below. Treat that the ground level is uniform and there are no difference level and the dips pot holes and ruts do not exist.
(a) Collection and supply of 65 mm HBG metal
(b) Collection and supply of gravel for base course
[Contd...
(c) Spreading of 40 mm HBG metal
(d) Spreading of gravel for base course and shoulders

16. For RCC slab culvert shown in the figure below, calculate-
(a) earthwork excavation for foundation of abutments and return walls;
(b) stone masonry in $\mathrm{CM}(1: 6)$ for abutments and return walls;
(c) $\operatorname{RCC}(1: 1 \cdot 5: 3)$ required for deck slab.

17. Calculate the following quantities for an overhead tank as shown in the figure below :
(a) Earth work excavation for column foundation
(b) RCC $(1: 2: 4)$ for cover slab, bottom slab and side walls. Thickness of cover slab 150 mm

18. Calculate the quantities for the following items of work for an open well shown in the figure below :
(a) Earthwork excavation for open well
(b) RR masonry in CM 1:6

