4623
 BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2021
 DCE - FIFTH SEMESTER EXAMINATION
 CIVIL ENGINEERING DRAWING - II

Time : 3 hours]
[Total Marks : 60

PART-A

Instructions: (1) Answer any four questions.
(2) Each question carries four marks.
(3) Need not be drawn to scale.
(3) Any missing data may be assumed suitably.

1. Draw the plan of a two-span (each 3.0 m) RCC T-beam bridge and label the components.
2. Draw the cross-section of a pipe in pipe culvert with the following data : Internal dia of CC pipe $=1000 \mathrm{~mm}$, External diameter $=1200 \mathrm{~mm}$, Bedding for the pipe $=250 \mathrm{~mm}$, CC Benching for the pipe $=300 \mathrm{~mm}$, CC Width of both bedding and benching $=1800 \mathrm{~mm}$, Bottom level of CC bedding $=+50 \cdot 00$, No. of pipes $=$ one.
3. Draw the plan of a septic tank from the following specifications : Internal diameter $=3.50 \mathrm{~m} \times 1.20 \mathrm{~m} \times 1.20 \mathrm{~m}$, Brick masonry wall thickness $=230 \mathrm{~mm}$, CC offset for masonry walls $=300 \mathrm{~mm}$. Scum board and baffle wall of 100 mm thick are provided at 900 mm from the inlet and outlet end walls respectively.
4. Name the parts numbered from 1 to 5 of the pipe culvert as shown in figure.

5. Draw the longitudinal section of a canal drop and name the parts.
6. Sketch the barrel of a tower head sluice from the following data :

Vent way	$=0.90 \mathrm{~m}$ wide $\times 0.75 \mathrm{~m}$ deep
Width of barrel side wall	$=0.5 \mathrm{~m}$ at top and 0.75 m at bottom
Foundation with CC	$=-0.45 \mathrm{~m}$ thick with 0.3 m offset
RCC slab over barrel	$=150 \mathrm{~mm}$ thick

7. Draw the cross-section of a wash basin fixed to the wall at a height of 750 mm with the following data :

Height of the room	$=3000 \mathrm{~mm}$
Slab thickness	$=150 \mathrm{~mm}$
Size of wash basin	$=600 \mathrm{~mm} \times 400 \mathrm{~mm}$

PART—B

Instructions: (1) Answer all questions.
(2) Figures in the margin indicate marks.
(3) Any missing data may be assumed suitably.
(3) This part needs to be drawn in the given scale.
8. Draw the sectional elevation of a square $R C C$ overhead tank with the following data to a scale of $1: 50$.

Height of the tank (from GI to bottom of the tank, i.e., top of floor slab or base slab) $=9 \mathrm{~m}$

Size of tank $=4 \mathrm{~m} \times 4 \mathrm{~m} \times 2 \mathrm{~m}$
Thickness of RCC side walls $=200 \mathrm{~mm}$
Thickness of RCC base slab $=200 \mathrm{~mm}$
Thickness of RCC roof slab $=100 \mathrm{~mm}$
Size of RCC column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
No. of RCC columns $=4$ Nos (one at each corner)
Size of RCC brace beams $=300 \mathrm{~mm} \times 300 \mathrm{~mm}$
Spacing of brace beams $=3.0 \mathrm{~m} / \mathrm{cc}$
Depth of RCC footing below ground level $=1.5 \mathrm{~m}$
Size of footing at base $=1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$
Thickness of footing at column face $=500 \mathrm{~mm}$
Thickness of footing at the end $=200 \mathrm{~mm}$
Thickness of levelling course below the footing $=200 \mathrm{~mm}$
Dia. of inflow pipe $=200 \mathrm{~mm}$ Dia. of outflow pipe $=150 \mathrm{~mm}$
Dia. of scour pipe $=100 \mathrm{~mm}$, Size of manhole cover $=600 \mathrm{~mm} \times 450 \mathrm{~mm}$
Overflow pipe at the bottom level of roof slab $=100 \mathrm{~mm}$. Show the pipe connections, ladder and ventilating arrangements.

OR

9. Draw the following views of a septic tank to a scale of $1: 20$ from the given specifications:
(a) Plan
(b) Longitudinal section

Specifications :

Internal dimensions	$=900 \times 2750 \mathrm{~mm}$
Brick masonry wall thickness	$=230 \mathrm{~mm}$
Thickness of CC bed	$=500 \mathrm{~mm}$
CC Offset for masonry walls	$=300 \mathrm{~mm}$
Depth of water	$=1000 \mathrm{~mm}$
Free board	$=300 \mathrm{~mm}$
Thickness of RCC roof panels	$=100 \mathrm{~mm}$ and width 450 mm

fitted with bent handles for lifting.
Scum board $=$ RCC precast slab 75 mm thick fixed at a height of 300 mm from floor level and extending up to a height 150 mm below roof. This shall be fixed at a distance of 900 mm from inside of wall at inflow and into a grove 75 mm deep.

Standing baffle $=$ RCC precast slab 75 mm thick kept on floor at a distance of 600 mm from inside of wall at outflow end. The top of baffle shall be 150 mm below water level.

Inflow and outlet pipes $=100 \mathrm{~mm}$ dia. T-shaped pipes Vent pipe $=$ 50 mm dia. A.C pipe with cowl extending to a height of 2.0 m above G.L.

Masonry pedestal $=450 \mathrm{~mm}$ dia. Circular brick masonry pedestal shall be provided around the vent pipe up to GL. General ground level $=300 \mathrm{~mm}$ above top of RCC precast roof panels.
10. Draw the longitudinal section of canal drop showing the following parts (need not be drawn to scale)
(a) Notch wall/pier
(b) U/S revetment to canal slopes
(c) CBL \& GL U/S
(d) U/S \& D/S toe walls
(e) Body wall
(f) CC apron D/S
(g) Rough stone bed pitching D/s
(h) CC bed under body wall
(i) FSL on both sides
(j) Bed level and ground level D/S

OR
11. Sketch the section of a homogeneous tank bund with the following data:

Top width	$=1.2 \mathrm{~m}$
T.B.L	$=+62.00$
G.L	$=+58.00$
Stripped G.L	$=+57.60$
Free board $=$	1 m
Side slopes $=$	$11 / 2: 1$ on U/S $\& 2: 1$ on D $/ \mathrm{S}$
Key trenches $=$	$0.6 \mathrm{~m} \times 1.2 \mathrm{~m} @ 4.0 \mathrm{~m} \mathrm{C} / \mathrm{C}$
Revetment $=$	300 mm size rough stone over 150 mm thick
	Gravel backing.
Toe drain $=$	1 m bed width and 1 m below GL with $1: 1$ side
	Slopes.

Toe wall under revetment $=1.0 \mathrm{~m}$ wide and 1.2 m deep

