4623

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2018 DCE-FIFTH SEMESTER EXAMINATION

CIVIL ENGINEERING DRAWING-II
Time : 3 hours]
[Total Marks : 60
PART—A
$4 \times 5=20$
Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.
(4) This part need not be drawn to scale.

1. Sketch the section at support of an RCC slab bridge showing bed block and abutment cross-section and name the parts.
2. Draw the cross-section of a pipe in pipe culvert with the following data :

Internal dia of CC pipe $=1000 \mathrm{~mm}$
External diameter $=1200 \mathrm{~mm}$
Bedding for the pipe $=250 \mathrm{~mm} \mathrm{CC}$
Benching for the pipe $=300 \mathrm{~mm} \mathrm{CC}$
Width of both bedding and benching $=1800 \mathrm{~mm}$
Bottom level of CC bedding $=+50 \cdot 00$
No. of pipes = one.
[Contd...
3. Draw the plan of a septic tank from the following specifications:

Internal diameter $=3.50 \mathrm{~m} \times 1.20 \mathrm{~m} \times 1.20 \mathrm{~m}$
Brick masonry wall thickness $=230 \mathrm{~mm}$
CC offset for masonry walls $=300 \mathrm{~mm}$
Scum board and baffle wall of 100 mm thick are provided at 900 mm from the inlet and outlet end walls respectively.
4. The support wall of a canal regulator has a width of 0.45 m at top and 1.5 m at bottom. This wall is constructed over an RCC beam 300 mm thick. The top of the shutter is at $+145 \cdot 00$ and the bottom of RCC working platform is at $+147 \cdot 00$.

Thickness of RCC working platform is 200 mm .
Width of platform $=$ length of pier $=$ length of abutment $=2.0 \mathrm{~m}$. Assuming suitable gearing arrangements and guard rails, sketch the cross-section of supporting wall.

Bottom level of RCC beam under support wall $=+142 \cdot 70$
Top level of concrete floor $=+141.50 \mathrm{~m}$
5. Draw the section across the barrel of a tank sluice with the following specifications :

Vent way : Width $=750 \mathrm{~mm}$ (internal)
: Height $=1000 \mathrm{~mm}$ (internal)
Side walls of barrel
in brick masonry : Thickness at top $=450 \mathrm{~mm}$ Thickness at the bottom $=600 \mathrm{~mm}$ (the water face is vertical)

Foundation : CC bed $=480 \mathrm{~mm}$ thick and 2550 mm wide
RCC roof slab for barrel $=150 \mathrm{~mm}$ thick.

Instructions : (1) Answer all questions.
(2) Figures in the margin indicate marks.
(3) Any missing data may be assumed suitably.
(4) This part needs to be drawn to the given scale.
6. Draw the following sectional views of a septic tank to a scale of 1:20 from the given specifications :
(a) Plan
(b) Longitudinal section

Specifications :

Internal dimensions $=900 \mathrm{~mm} \times 2750 \mathrm{~mm}$
Brick masonry wall thickness $=230 \mathrm{~mm}$
Thickness of CC bed $=500 \mathrm{~mm}$
CC offset of masonry walls $=300 \mathrm{~mm}$
Depth of water $=1000 \mathrm{~mm}$
Free board $=300 \mathrm{~mm}$
Thickness of RCC roof panels $=100 \mathrm{~mm}$ and width 450 mm fitted with bent handles for lifting.

Scum Board $=$ RCC precast slab 75 mm thick fixed at a height of 300 mm from floor level and extending up to a height 150 mm below roof. This shall be fixed at a distance of 900 mm from inside of wall at inflow end into a groove of 75 mm deep.

Standing baffle = RCC precast slab 75 mm thick kept on floor at a distance of 600 mm from inside of wall at outflow end. The top of baffle shall be 150 mm below water level.

Inflow and outlet pipes $=100 \mathrm{~mm}$ dia tee-shaped pipes.
Vent pipe $=50 \mathrm{~mm}$ dia AC pipe with a cowl extending to a height of 2.0 m above GL.

Masonry pedestal $=450 \mathrm{~mm}$ dia circular brick masonry pedestal shall be provided around the vent pipe up to G.L.
General ground level $=300 \mathrm{~mm}$ above top of RCC precast roof slab panels.
7. Draw the longitudinal section of a 'Canal Drop' with the following specifications :
Canal particulars :

	Upstream side	Downstream side
Ground level at site	$+133 \cdot 750$	$+133 \cdot 750$
Bed level	$+133 \cdot 20$	$+132 \cdot 00$
FSL	$+133 \cdot 65$	$+132 \cdot 45$
Canal bund level	$+133 \cdot 10$	$+134 \cdot 10$
Side slopes in cutting	$1: 1$	$1: 1$
Level of 1.0 m wide berm	$+133 \cdot 75$	$+133 \cdot 75$
Canal bed width	$1 \cdot 5 \mathrm{~m}$	$1: 2 \mathrm{~m}$
Slopes in embankment	$11 / 2: 1$	$11 / 2: 1$
water face	$2: 1$	$2: 1$

Body wall :
Top level $=+133 \cdot 200$
Bottom level $=\mathrm{CC}$ foundation top level $=+132 \cdot 00$
CC foundation bottom level $=+131 \cdot 25$
Top width $=600 \mathrm{~mm}$
Bottom width $=1000 \mathrm{~mm}$ with U / S face vertical
Width of CC foundation $=1.6 \mathrm{~m}$ with equal offset on either side
Notch wall :
Thickness of notch wall $=450 \mathrm{~mm}$
Top level of notch wall (CBL) $=+134 \cdot 00$
CC Apron on D / S drop :
CC apron shall be provided in continuation with CC bed under body wall with same thickness (750 mm). Length of CC apron from the edge of CC bed under body wall is 3.0 m . Top level of cc apron $=$ Bed level of canal on $\mathrm{D} / \mathrm{S}=+132 \cdot 00$

Rough stone bed pitching:
Upstream side : Bed pitching consists of 300 mm size stone boulders to a length of 1.5 m including toe.
Downstream side : Bed pitching consists of 300 mm size stone boulders to a length of 3.40 m including toe.
Revetment to canal slopes :
(a) Length on U/S side : Revetment is provided to the sides of canal from bed level to FSL for a length of 3.0 m with 300 mm size stone boulders. A slope of $1: 1$ is given at the end of side revetment to connect FSL and bed level.
(b) Downstream side : Revetment of D / S canal side slopes starts from canal bund level at the notch wall is taken to a level $+133.65(\mathrm{FSL}$ on $\mathrm{U} / \mathrm{S})$ at the end of CC apron in an inclined direction.
From the end of CC apron, Revetment is continued at the same level (+133.65) up to the end of rough stone pitching and vertically dropped to the level of $+132 \cdot 75$.
From this point, revetment is continued at the same level for a distance of 3.40 m .300 mm size rough stone boulders are used for revetment. The end of revetment is given a slope of $1: 1$ in order to reach canal bed on D / S.

