

 c14-c-607

 c14-c-607}
4721

BOARD DIPLOMA EXAMINATION, (C-14) MARCH / APRIL-2017 DCE—SIXTH SEMESTER EXAMINATION

 STRUCTURAL ENGINEERING DRAWINGTime : 3 hours]
Total Marks : 60

PART—A

$4 \times 5=20$
Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Part-A may be drawn not to scale.
(4) Assume suitable data, if necessary.
(5) Steel tables are permitted.

1. Redraw the figure given below and name the columns and beams as per the 'grid reference scheme'.

2. Draw the longitudinal section of a singly reinforced beam for the reinforcement details given below :

Clear span	$=3000 \mathrm{~mm}$
Size of the beam	$=230 \mathrm{~mm} \times 450 \mathrm{~mm}$
Bearing on walls	$=200 \mathrm{~mm}$
Main reinforcement	$=3$ nos. of 12 mm dia.
	(all straight bars)
Hanger bars	$=2$ nos. of 12 mm dia.
Stirrups	$=8 \mathrm{~mm}$ dia. $2-$ legged bars
at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	

3. Prepare a bar bending schedule for the one-way slab, with the following data :

Size of room	$: 2500 \mathrm{~mm} \times 6000 \mathrm{~mm}$ (inside)	
Wall thickness	$: 230 \mathrm{~mm}$	
Slab thickness	$: 120 \mathrm{~mm}$	
Main reinforcement	$: 10 \mathrm{~mm}$ dia. bars at 150 mm	
		c / c

All the bars are cranked on one side and cranks placed alternately. Distribution reinforcement : 8 mm dia. bars at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. All covers are 25 mm .
4. Obtain the reinforcing details (diameter, length and no. of bars) of the simply supported beam shown in the figure below. All covers are 25 mm . Also estimate the quantity of steel required for the main reinforcement of the beam.

5. Draw the typical heal joint of a roof truss showing all details.

Instructions : (1) Answer all questions.
(2) Each question carries twenty marks.
(3) Assume suitable data, if necessary.
(4) Assume suitable scale.
6. An RCC lintel with sunshade has the following specifications:

Clear span of lintel : 1500 mm
Width of wall : 230 mm
Size of lintel : $230 \mathrm{~mm} \times 200 \mathrm{~mm}$
Bearing on walls : 150 mm
Projection of sunshade
from face of the wall : 500 mm
Thickness of sunshade : 100 mm at the fixed end and 50 mm at the free end

Reinforcement of lintel
Main reinforcement : 3 nos. of 12 mm dia.
Hanger bars : 2 nos. of 10 mm dia.
Stirrups $\quad: 8 \mathrm{~mm}$ dia. 2-legged at 150 mm
c/c
Reinforcement of sunshade
Main bars : 10 mm dia. bars at 180 mm c/c
Distribution steel : 8 mm dia. @ 200 mm c/c
Draw the following views to a scale of 1:10 :
(a) Longitudinal section of lintel
(b) Cross-section of lintel with sunshade
7. From the given specifications of a column base with gusset plate, draw the following views to a scale $=1: 10$:
(a) Plan taking the section above the top level of the gusset plate.
(b) Elevation showing gusset plate and flange of column, etc.
(c) Elevation showing column web, gusset plate, gusset angle, etc.
Specifications :
(a) The column section consists of ISWB $500 @ 95 \cdot 2 \mathrm{~kg} / \mathrm{m}$ and flange plates each $325 \mathrm{~mm} \times 12 \mathrm{~mm}$ one on each side of column.
(b) Size of the baseplate $800 \mathrm{~mm} \times 700 \mathrm{~mm} \times 20 \mathrm{~mm}$. Column is proportioned such that web of the column is parallel to 800 mm side.
(c) Thickness of the gusset plate is 12 mm and total depth is 400 mm and length is 600 mm and placed parallel to the flange. The edges are splayed out at a slope such that the height at the edge is 150 mm .
(d) Welded connections :

Between the web of the column, inner side of flange to the base-plate, 6 mm fillet welds are provided. Between the gusset plate to the flange of the column, 6 mm fillet weld is provided over the full height of the gusset plate. Between the gusset plate and the column base, 6 mm fillet weld are provided over the full-length on both the sides. Six anchor bolts are provided to anchor the baseplate to the concrete pedestal.
For ISWB $500 @ 95 \cdot 2 \mathrm{~kg} / \mathrm{m}, h=500 \mathrm{~mm} ; \quad b_{f}=250 \mathrm{~mm}$; $t_{f}=14.7 \mathrm{~mm} ; t_{w}=9.9 \mathrm{~mm}$

