BOARD DIPLOMA EXAMINATION, (C-14)
 JUNE-2019
 DCE - SIXTH SEMESTER EXAMINATION STRUCTURAL ENGINEERING DRAWING

PART-A

$$
4 \times 5=20 M
$$

Instructions: 1) Answer all questions. Each question carries four marks.
2) Part-A may be drawn not to scale
3) Any missing data may be assumed suitably.
4) Steel tables are permitted.

1) Redraw the diagram given below and name the columns and beams as per the "column reference scheme".

2) Draw the Longitudinal section of the RC beam simply supported with size $300 \mathrm{~mm} \times 500 \mathrm{~mm}$, clear span of 4 m , wall thickness 230 mm and show the following reinforcemnt details assuming all covers as 40 mm . Main bars 4 nos. 20 mm dia HYSD out of which two central bars cranked at a distance of 600 mm from the inner face of the support. Hanger bars 12 mm dia., 2 nos., Stirrups 8 mm dia. 2 -legged at $150 \mathrm{mmc} / \mathrm{c}$.
3) Draw the details of reinforcement at the junction of column and beam of a frame designed as Earthquake resistance structure.
4) Prepare bar bending schedule for the simply supported RC beam with the following data:
Clear span of the beam $=3600 \mathrm{~mm}$
Width of the beam
Overall depth of the beam
Bearing on either side
Main reinforcement

Anchor bars
= 2 nos \#10mm at top.
Stirrups
$=8 \mathrm{~mm}$ dia. 2 -legged at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. throughout the length of the beam.
5) Draw the sectional plan of a built up column with lacing system from given specifications.

Specifications:

Overall height of the column is 600 mm consists of 2 nos. ISMC $300 @ 35.8 \mathrm{~kg} / \mathrm{m}$ placed back to back keeping a clear distance of 170 mm between the webs. The column is provided with single lacing system. The sizes of lacing flats are $50 \mathrm{~mm} \times 10 \mathrm{~mm}$ thick. Lacing is at an angle of 45° with the axis of the column.

Spacing between the consecutive lacing connections is 600 mm . 6 mm fillet weld of 120 mm length is provided at lacing connection with the main component. At the end of column, $300 \times 150 \times 10 \mathrm{~mm}$ plates are provided and are connected with 6 mm fillet weld all round.
$2 \times 20=40 \mathrm{M}$
Instructions: 1) Answer all questions. Each question carries twenty marks.
2) The drawing must be to the scale.
3) Any missing data may be assumed suitably.
6) Draw the plan and longitudinal cross section of an isolated square footing for a column with the following specifications.
Size of the column $=300 \times 300 \mathrm{~mm}$
Size of the footing $\quad=1800 \times x 1800 \mathrm{~mm}$
Thickness of the footing $=400 \mathrm{~mm}$
Base course thickness
$=150 \mathrm{~mm}$ with P.C.C. 1:2:4
Reinforcement for footing $=12 \mathrm{~mm}$ dia. at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. in both directions.
The horizontal lap length of the column reinforcing bar is 400 mm each. Reinforcement for the column:

Main bar	$=16 \mathrm{~mm}$ dia. 4 nos.
Lateral ties	$=8 \mathrm{mmdia}$. ties at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
All covers	$=50 \mathrm{~mm}$

7) From the line diagram given below and with the given specifications, draw the Elevation showing the design details of roof truss.

Span of the truss
$=8000 \mathrm{~mm}$
Rise
Spacing of the trusses
Tie beam

Principal rafter

Other members of the truss

Purlins at panel points

Cleat angle

Thickness of the gusset plate
Supporting wall thickness $=300 \mathrm{~mm}$

Size of the bearing plate $=200 \times 200 \times 12 \mathrm{~mm}$

Size of the shoe angle
Anchor bolt
Roof covering
$=$ ISA $100 \times 100 \times 6 \mathrm{~mm} @ 9.2 \mathrm{~kg} / \mathrm{m}$.
$=20 \mathrm{~mm}$ dia
= A.C. Corrugated sheets

Welded connections used 4 mm fillet welds between gusset plate and angles.

