

C-14-CHPP/EE-102

4041

BOARD DIPLOMA EXAMINATION, (C-14) APRIL/MAY—2015 **DEEE—FIRST YEAR EXAMINATION**

ENGINEERING MATHEMATICS—I

[Total Marks: 80 Time: 3 hours

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** Resolve $\frac{7x-1}{(3x-1)(2x-1)}$ into partial fractions.
- 2. Define skew-symmetric matrix. Give an example.
- 3. Find the value of $\begin{bmatrix} 1 & & 2 \\ & 2 & 1 \\ & 2 & 1 \end{bmatrix}$, where is the cube root of unity.
- **4.** Prove that $\sin^2 52 \frac{1}{2}^{\circ}$ $\sin^2 22 \frac{1}{2}^{\circ}$ $\frac{\sqrt{3}}{4\sqrt{2}}$.

[Contd... /4041

5. Prove that
$$\frac{\sin 3}{1 + 2\cos 2}$$
 sin.

6. Express
$$\frac{(1 \ i)(2 \ i)}{3 \ i}$$
 in $a \ ib$ form.

- 7. Find the perpendicular distance from the point (3, 2) to the line 4x 5y 6 0.
- **8.** Find the equation of circle with (2, 3) and (6, 9) as ends of diameter.

9. Evaluate
$$\lim_{x \to 0} \frac{x}{1 \sqrt{1 - x}}$$
.

10. Find the derivative of $\frac{\sin x}{1 + \cos x}$ with respect to x.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11. (a) Express the matrix

2 3 4 as sum of symmetric and 5 0 5

skew-symmetric matrices.

- (b) Solve the equations $3x \ y \ 2z \ 3$, $2x \ 3y \ z \ 3$, $x \ 2y \ z \ 4$ by determinant method.
- **12.** (a) If $A \ B \ C$, then show that $\sin 2A \ \sin 2B \ \sin 2C \ 4 \sin A \sin B \sin C$
 - (b) Prove that $\tan^{-1}(n)$ $\tan^{-1}(n^2 n 1)$ $\cot^{-1}(n 1) = 0$.

/**4041** 2 [Contd...

- **13.** (a) Solve the equation $4 \cos 6\sin^2 0$.
 - (b) In any ABC, if A 60°, then show that $\frac{b}{c}$, $\frac{c}{a}$, $\frac{c}{a}$ 1.
- **14.** (a) Find the equation of rectangular hyperbola whose focus is (-3, 4) and directrix is 4x + 3y + 1 = 0.
 - (b) Find the eccentricity, vertices and foci of ellipse $9x^2$ $16u^2$ 144.
- **15.** (a) Differentiate $\log \frac{1-x^2}{1-x^2}$ with respect to x.
 - (b) Find the derivative of tan $\frac{1}{1} \frac{\sin x}{\cos x}$ with respect to x.
- **16.** (a) If $x^y = e^{x-y}$, then show that $\frac{dy}{dx} = \frac{\log x}{(1 \log x)^2}$.
 - (b) Verify that $\frac{2u}{x y} = \frac{2u}{y x}$ if $u = \log(x^2 y^2)$.
- **17.** (a) Find the lengths of the tangent, normal, subtangent and subnormal to the curve x $a(\sin)$, y $a(1\cos)$ at /3.
 - (b) The volume of sphere is increasing at the rate of $1 \text{ m}^3/\text{min}$. Find the rate at which the radius and surface area are increasing when the volume is $\frac{32}{3} \text{ m}^3$.
- **18.** (a) Show that maximum rectangle that can be inscribed in a circle is a square.
 - (b) The time of oscillation of a simple pendulum of length l is given by T 2 $\sqrt{\frac{l}{g}}$ if the length is increased by 2%. Find the approximate % increase in its time of oscillation, where g is constant.

* * *

/4041 3 AA15N—PDF WWW.MANARESULTS.CO.IN