

C-14-CHPP/EE-102

4041

BOARD DIPLOMA EXAMINATION, (C-14)
 APRIL/MAY—2015 DEEE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Resolve $\frac{7 x-1}{(3 x-1)(2 x-1)}$ into partial fractions.
2. Define skew-symmetric matrix. Give an example.
3. Find the value of $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$, where ω is the cube root of unity.
4. Prove that $\sin ^{2} 52 \frac{1}{2}^{\circ}-\sin ^{2} 22 \frac{1}{2}^{\circ}=\frac{\sqrt{3}+1}{4 \sqrt{2}}$.
[Contd...
5. Prove that $\frac{\sin 3 \theta}{1+2 \cos 2 \theta}=\sin \theta$.
6. Express $\frac{(1+i)(2+i)}{3+i}$ in $a+i b$ form.
7. Find the perpendicular distance from the point $(3,2)$ to the line $4 x+5 y+6=0$.
8. Find the equation of circle with $(2,3)$ and $(6,9)$ as ends of diameter.
9. Evaluate $\lim _{x \rightarrow 0}\left[\frac{x}{1-\sqrt{1-x}}\right]$.
10. Find the derivative of $\frac{\sin x}{1+\cos x}$ with respect to x.

> PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Express the matrix $\left[\begin{array}{ccc}-1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5\end{array}\right]$ as sum of symmetric and skew-symmetric matrices.
(b) Solve the equations $3 x+y+2 z=3, \quad 2 x-3 y-z=-3$, $x+2 y+z=4$ by determinant method.
12. (a) If $A+B+C=\pi$, then show that

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

(b) Prove that $\tan ^{-1}(n)-\tan ^{-1}\left(n^{2}+n+1\right)+\cot ^{-1}(n+1)=0$.
13. (a) Solve the equation $4+\cos \theta-6 \sin ^{2} \theta=0$.
(b) In any $\triangle A B C$, if $A=60^{\circ}$, then show that $\frac{b}{c+a}+\frac{c}{a+b}=1$.
14. (a) Find the equation of rectangular hyperbola whose focus is $(-3,4)$ and directrix is $4 x+3 y+1=0$.
(b) Find the eccentricity, vertices and foci of ellipse $9 x^{2}+16 y^{2}=144$
15. (a) Differentiate $\log \left(\frac{1+x^{2}}{1-x^{2}}\right)$ with respect to x.
(b) Find the derivative of $\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ with respect to x.
16. (a) If $x^{y}=e^{x-y}$, then show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
(b) Verify that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ if $u=\log \left(x^{2}+y^{2}\right)$.
17. (a) Find the lengths of the tangent, normal, subtangent and subnormal to the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi / 3$.
(b) The volume of sphere is increasing at the rate of $1 \mathrm{~m}^{3} / \mathrm{min}$. Find the rate at which the radius and surface area are increasing when the volume is $\frac{32 \pi}{3} \mathrm{~m}^{3}$.
18. (a) Show that maximum rectangle that can be inscribed in a circle is a square.
(b) The time of oscillation of a simple pendulum of length l is given by $T=2 \pi \sqrt{\frac{l}{g}}$ if the length is increased by 2%. Find the approximate \% increase in its time of oscillation, where g is constant.

