## 4461

# BOARD DI PLOMA EXAMI NATI ON, (C-14) MARCH / APRI L-2019 <br> DEEE - FOURTH SEMESTER EXAMI NATION ENGINEERING MATHEMATICS-III 

Time: 3 Hours
Max.Marks: 80
PART-A
$10 \times 3=30 \mathrm{M}$
Instruction : 1) Answer all questions. Each question carries three marks.
2) Answers should be brief and stright to the point and shall not exceed five simple sentences.

1) Solve $\frac{d^{2} y}{d x^{2}}+16 y=0$
2) Solve $\left(D^{3}-2 D^{2}-4 D+8\right) y=0$, where $D=\frac{d}{d x}$
3) Find the particular integral of $\left(D^{2}+1\right) Y=\sin \mathrm{x}$, where $D=\frac{d}{d x}$
4) Find the Laplace transfor of $\cos ^{2} 2 t$.
5) Find the Laplace tranform of $\frac{\sin t}{t}$
6) Find the inverse laplace transform of $\frac{2 s-5}{s^{2}-4}$.
7) Find the inverse laplace transform of $\frac{s}{(s+2)^{2}}$
8) Find the value of $a_{0}$ in the fouries series expansion of $F(x)=x \cos x$ in the interval $(-\pi, \pi)$
9) Write the formula for half-range fourier sine series of $f(x)$ in the interval ( $0, l$ )
10) If a die is thrown once, find the probability of getting a prime number on the top of the die.

Instructions: 1) Answer any Five questions. Each question carries Ten marks.
2) Answers should be comprehensive and criteria for valuation is the content but not the length of the answer.
11) (a) Solve $\left(D^{2}-D-6\right) y=e^{-2 x}$, where $\mathrm{D}=\frac{d}{d x}$
(b) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) \mathrm{y}=2 \mathrm{x}^{2}$, where $\mathrm{D}=\frac{d}{d x}$
12) (a) solve $\left(\mathrm{D}^{2}-4 \mathrm{D}+3\right) \mathrm{Y}=\sin 3 \mathrm{x} \cos 2 \mathrm{x}$, where $\mathrm{D}=\frac{d}{d x}$
13) (a) Evaluate $\int_{0}^{\infty}$ te $-2 t \sin t d t$ using laplace transforms.
b) Using convolution theorem, evaluate $L^{-1}\left\{\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right\}$
14) Using laplace transform method, solve $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=2 e^{3 t}$ if $y(0)=2 \& y^{\prime}(0)=3$
15) Explain $f(x)=\left\{\begin{array}{l}1,0<x<\pi \\ 0, \pi<x<2 \pi\end{array}\right.$ as a fourier series
16) Obtain the fourier series for $f(x)=\frac{(\pi-x)^{2}}{4}$ in the interval ( $o, 2 \pi$ ) and hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .=\frac{\pi^{2}}{6}$
17) a) A page is opened at random from a book containing 200 pages. What is the probability that the number on the page is a perfect square?
b) A card is drawn art random from a pack of 52 cards. What is the probability that the drawn card is neither a heart nor a king?
18) a) State addition \& multiplication theorems on probability for two events.
b) An urn contrains 7 red and 3 black balls. Two balls are drawn from the urn without replacement. What is the probability that the second ball is red, if it is known that the first ball drawn is red?

