

C14-EC-102/C14-CHPC-102/C14-PET-102

4034

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016 DECE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART—A

Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Resolve $\frac{3 x}{(x-2)(x+1)}$ into partial fractions.
2. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then show that $A \cdot A^{T}=A^{T} \cdot A=I$, where I is the unit matrix of order 2 .
3. Using Laplace expansion, evaluate the determinant

$$
\left|\begin{array}{rrr}
0 & q & -r \\
-q & 0 & p \\
r & -p & 0
\end{array}\right|
$$

[Contd...
4. Show that $\frac{\cos 37^{\circ}+\sin 37^{\circ}}{\cos 37^{\circ}-\sin 37^{\circ}}=\cot 8^{\circ}$.
5. Show that $\tan \left(\frac{\pi}{4}+\theta\right)-\tan \left(\frac{\pi}{4}-\theta\right)=2 \tan 2 \theta$.
6. Find the real and imaginary parts of the complex number $\frac{4+2 i}{1-2 i}$.
7. Find the equation of the straight line making intercepts $\frac{15}{3}$ and $\frac{7}{5}$ with the x-axis and y-axis respectively.
8. Find the equation of the point circle with centre $(2,-3)$.
9. Evaluate : $\operatorname{Lt}_{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\cdots+n^{2}}{n^{3}}$.
10. Differentiate between $x^{2}+e^{x} \sec x$ with respect to x.

> PART—B
$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) If $A=\left[\begin{array}{rrr}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$, compute $A^{2}-5 A+6 I$, where I is the unit matrix of order 3 .
(b) Solve the system of equation

$$
\begin{array}{r}
x+y+z=3 \\
x+2 y+3 z=4 \\
x+4 y+9 z=6
\end{array}
$$

using Gauss-Jordan method.
[Contd...
12. (a) In $\triangle A B C$, prove that

$$
\sin 2 A-\sin 2 B+\sin 2 C=4 \cos A \sin B \cos C
$$

(b) Show that $\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{36}{85}$.
13. (a) Solve : $2 \cos ^{2} \theta+3 \sin \theta=0$.
(b) In $\triangle A B C$, if $A=60^{\circ}$, show that

$$
\frac{b}{c+a}+\frac{c}{a+b}=1
$$

14. (a) Find the vertex, focus, directrix, axis and length of latus rectum of the parabola $7 x^{2}+4 y=0$.
(b) Find the equation of the ellipse whose axes are coordinate axes and passing through the points $(1,-3)$ and $(-2,2)$.
15. (a) Find the derivative of $e^{8 x} \cdot \sec x$ with respect to x.
(b) Find $\frac{d y}{d x}$, if $y=x^{\tan x}$.
16. (a) Find $\frac{d y}{d x}$, if $x=a(\theta-\sin \theta)$ and $y=a(1-\cos \theta)$.
(b) If $z=\log \left(x^{2}+y^{2}\right)$, show that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
17. (a) Find the angle between the curves $x^{2}-y^{2}=1$ and $x y=\sqrt{2}$ at $(\sqrt{2}, 1)$.
(b) A man of 2 m tall is approaching a lamp post at the rate of $0.5 \mathrm{~m} / \mathrm{sec}$. If the lamp is situated at a height of 8 m , then find the rate at which the length of the shadow of the man is decreasing.
18. (a) Find the dimensions of a rectangle of maximum area having a perimeter of 36 ft .
(b) Time of oscillation of a simple pendulum of variable length l is given by $T=2 \pi \sqrt{\frac{l}{g}}$. If the length is increased by 2%, find the approximate increase in its time of oscillation, where g is a constant.
