

C14-EC/CHPC/PET-102

4034

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2017 DECE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Resolve $\frac{2x-1}{(x-1)(2x-3)}$ into partial fractions.
- **2.** If A B $\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$ and A B $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$, then determine A.
- **3.** If is a cube root of unity, prove that

$$\begin{vmatrix} 1 & & 2 \\ 2 & & & \\ & 2 & 1 \end{vmatrix} = 0$$

4. If A B 45, prove that $(1 \tan A)(1 \tan B) 2$.

/**4034** 1 [Contd...

- **5.** Prove that $\cos^4 A \sin^4 A \cos 2A$.
- **6.** Find the modulus of $\frac{9}{2 i\sqrt{5}}$.
- 7. Find the equation of the straight line passing through the points (12, 1) and (13, 4).
- **8.** Find the equation of the point circle with centre (7, 9).
- **9.** Evaluate $\lim_{x \to 0} \frac{\tan 37x}{\sin 11x}$.
- **10.** Find $\frac{dy}{dx}$, if $y = x^6 6x^5 3x^2 1$.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** *(a)* Show that

(b) Solve the following system of equations by using Cramer's rule :

- **12.** (a) $\cos 10 \cos 30 \cos 50 \cos 70 \frac{3}{16}$
 - (b) Solve $\tan^{-1}(1 \ x) \ \tan^{-1}(1 \ x) \ \tan^{-1}\frac{1}{2}$.

/4034

[Contd...

- **13.** (a) Solve cos $\sqrt{3}$ sin
 - (b) Solve the triangle ABC, if a 13, b 14 and c 15.
- **14.** (a) Find the equation of the ellipse whose axes are the coordinate axes and whose foci are (5,0) and e $\frac{1}{5}$.
 - (b) Find the equation of the rectangular hyperbola whose focus is (3, 4) and directrix is 4x + 3y + 1 = 0.
- **15.** (a) Differentiate $y = x^{\log x}$ w.r.t. x.
 - (b) Find $\frac{dy}{dx}$, if x = a (\sin), y = a (1 \cos).
- **16.** (a) Differentiate $\sin^{-1} \frac{2x}{1-x^2}$ w.r.t. $\cos^{-1} \frac{1-x^2}{1-x^2}$.
 - (b) If $u \log(x \ y \ z)$, prove that $x \frac{u}{x} \ y \frac{u}{y} \ z \frac{u}{z}$ 1.
- **17.** (a) Find the length of tangent, normal, sub-tangent and sub-normal to the curve x^2 y^2 6x 2y 5 0, at (2, 1).
 - (b) A light is hung 8 m, directly above a straight horizontal floor. A man of 2 m tall is walking away from the lamp at the rate of 5.4 m/min. Find the rate at which his shadow is lengthening.
- **18.** (a) Find the dimensions of a rectangle of maximum area having a perimeter of 36 ft.
 - (b) An error of 0.05 cm is committed in measuring a length of 10 cm. If so, find the absolute error, relative error and percentage error.

* * *