

C14-EC/CHPC/PET-103

4035

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2015 DECE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A 3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- **1.** Write the dimensional formulae of (*a*) impulse, (*b*) density and (*c*) power.
- **2.** Find the magnitude of the vector $\vec{A} = 3\vec{i} + 4\vec{j} + 5\vec{k}$.
- **3.** Write any three characteristics of acceleration due to gravity.
- 4. Define SHM. Give two examples of it.
- 5. State first law and second law of thermodynamics.
- 6. Define beat. Write any two applications of it.
- 7. Define capillarity. Write any two examples of it.
- 8. State Hooke's law. Define stress.
- 9. Define magnetic induction field strength. State its SI unit.
- **10.** State any three applications of superconductivity.

/4035 1 [Contd... WWW.MANARESULTS.CO.IN

		* PART—B 10×	5=50
Instr	ruct	tions : (1) Answer any five questions.	
		(2) Each question carries ten marks.	
11.	(a)	Derive an expression for magnitude and direction or resultant vector in parallelogram law of vectors.	of 7
	(b)	A force of $7\vec{i}$ $13\vec{j}$ $9\vec{k}$ produces a displacement of $2\vec{i}$ $3\vec{j}$ $5\vec{k}$. Find the work done.	of 3
12.	(a)	Show that path of a projectile is parabola in obliqu projection.	e 6
	(b)	A stone is thrown vertically upwards from the ground with a velocity of 14 m/sec. Find the (i) maximum height is reaches and (ii) time of flight.	n t 4
13.	(a)	Write any five advantages of friction.	5
	(b)	A body is sliding down on a rough inclined plan which makes an angle 30° with horizontal. Calculate it acceleration. Take : 0 1414.	e s 5
14.	(a)	State the principle of law of conservation of energy.	2
	(b)	Derive the relationship between kinetic energy and momentum.	d 4
	(c)	If the mass of the body is reduced to half and velocity i doubled, then how does the kinetic energy change?	s 4
15.	(a)	Define ideal simple pendulum. Derive an expression fo its time period.	r 7
	(b)	State the laws of simple pendulum.	3
/403	85	2 [Co	ntd

16.	(a)	Derive ideal gas equation.	6
	(b)	Calculate universal gas constant for one gram mole of a gas.	4
17.	(a)	Define longitudinal and transverse wave motion. State whether the sound waves in air are transverse or longitudinal.	5
	(b)	State any five effects of noise pollution.	5
18.	(a)	State Kirchhoff's laws.	4
	(b)	Derive the balancing condition of Wheatstone's Bridge with a neat circuit diagram.	6

$\star\star\star$

*