

# C14-EC-105 

## 4038

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016 DECE-FIRST YEAR EXAMINATION

## BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

## Time : 3 hours ]

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Define Joule's law.
2. Define the terms magnetic potential, flux and flux density.
3. Define absolute permittivity and relative permittivity.
4. Write the need for trickle chargin.
5. Define (a) average value and (b) peak factor.
6. Differentiate between potentiometer and rheostat.
7. What is MCB? Mention its use.
8. What are the advantages of PCBs?
9. List the application of $P-N$ junction diode.
10. Draw the circuit of a full-wave bridge rectifier.
[ Contd...

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Two resistors of $5 \Omega$ and $20 \Omega$ are connected in series across 240 V supply. Calculate the (i) total current and
(ii) voltage across each resistor.
(b) A copper wire has a resistance of $30 \Omega$ at $0{ }^{\circ} \mathrm{C}$. Calculate its resistance at $40^{\circ} \mathrm{C}$ given that $\alpha$ at $0^{\circ} \mathrm{C}$ is $0.0036543 /{ }^{\circ} \mathrm{C}$. Also calculate $\alpha$ at $25^{\circ} \mathrm{C}$.
12. (a) Obtain the expression for magnitude of the force on a conductor in magnetic field.
(b) Explain the two efficiencies of the cell.
13. Three capacitors of capacitances $10 \mu \mathrm{~F}, 25 \mu \mathrm{~F}$ and $50 \mu \mathrm{~F}$ are connected in parallel across 200 V supply. Calculate (a) total capacitance, (b) charge on each capacitor and (c) energy stored in each capacitor. $4+3+3=10$
14. A resistor of $1000 \Omega$ is connected in series with a $56 \mu \mathrm{~F}$ capacitor to a supply of 230 V and 50 Hz . Find (a) total impedance, (b) current through the circuit, (c) phase angle and
(d) voltage across resistor.
$3+2+3+2=10$
15. (a) Classify capacitors. 5
(b) Explain color coding of resistors.
16. List the applications of relays and explain the construction and working of electromagnetic relay.
17. (a) Explain briefly the soldering methods of PCBs.
(b) Draw $V-I$ characteristics of $P-N$ junction diode in reverse bias and explain.
18. Explain the working of simple Zener-regulated DC power supply.

