C14-EC-305

4241

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016
 DECE-THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. State deMorgan's theorems.
2. Explain the use of alphanumeric codes (a) ASCII and (b) EDCDIC.
3. Convert (1011011) gray into binary code.
4. Define the terms (a) noise margin, (b) fan-in and (c) fan-out.
5. Draw the logic circuit of decimal to BCD encoder.
6. Distinguish between serial and parallel binary adders.
7. Construct $J-K$ flip-flop using $S-R$ flip-flop.
8. What is the necessity of clock in flip-flops? List the types of triggering.
9. State the need for a register.
10. Distinguish between synchronous and asynchronous counters.

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. Using the Karnaugh map method, simplify the following expression to its minimum sum of product form and realize using basic gates :

$$
Y=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} B C \bar{D}+A B C \bar{D}+A \bar{B} C \bar{D}
$$

12. (a) Realize the basic gates using NOR gates only.
(b) Convert $(974 \cdot 35)_{10}$ into octal number.
(c) What are the minterms and maxterms?
13. Draw and explain the working of open collector TTL NAND gate circuit.
14. Draw and explain the working of 4×1 multiplexer circuit and give its truth table.
15. Draw and explain the operation of full-adder circuit with truth table and construct full adder using two half adders.
16. Explain the working of 4-bit bidirectional shift register with a circuit and timing diagram.
17. (a) Explain clocked T flip-flop with the help of truth table and circuit.

(b) Draw and explain the circuit of NAND latch and write truth
table.
18. (a) Explain the working of basic dynamic MOSRAM cell.
(b) Explain the basic principle of working of diode ROM.

