

C14-EC-306

4242

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016
 DECE-THIRD SEMESTER EXAMINATION

ELECTRICAL TECHNOLOGY

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. The two vectors are $Z_{1}=10+j 4$ and $Z_{2}=10 \angle-53 \cdot 13^{\circ}$. Perform (i) $Z_{1}+Z_{2}$ and (ii) $Z_{1} \div Z_{2}$ and express in polar form.
2. Draw admittance triangle in parallel inductive circuit and write expression for power factor.
3. State the conditions required for parallel resonance.
4. State Fleming's right-hand rule.
5. Why commutator is required in d.c. machines?
6. What is phase sequence in three-phase circuit.
7. What is the need of conducting $O C$ and $S C$ tests in single-phase transformer?
[Contd...
8. List the applications of a three-phase transformer.
9. Define synchronous speed and write formula for it.
10. Why DC supply is required in an alternator?

> PART—B
$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Draw a neat sketch showing the curve between current and frequency in series resonance and indicate bandwidth, resonant frequency, lower cut-off frequency and upper cut-off frequency.
(b) An inductive circuit has a resistance of 2Ω in series with an inductance of 0.015 H . If the circuit connected across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase AC supply, find (i) current, (ii) power consumed and (iii) power factor.
12. A resistor of 6Ω is connected in parallel with a capacitor of $398 \mu \mathrm{~F}$. If this circuit is connected across $240 \mathrm{~V}, 50 \mathrm{~Hz}, \mathrm{AC}$ supply, calculate the (i) total conductance, (ii) total susceptance, (iii) total admittance, (iv) current drawn from the supply and (v) power factor of the circuit.
13. (a) Derive the expression for resonant frequency in series RLC circuits.
(b) A circuit consists of resistor, an inductor and a capacitor in series. The supply voltage is 250 V , the current is 1 A and the voltage across the capacitor is 500 V . Calculate the resistance, inductance and capacitance, if the resonant frequency is 50 Hz .
14. With a neat diagram, explain the working of a d.c. three-point starter.
15. With the neat sketches of circuit diagram and graph, explain speed control of DC shunt motor by armature voltage control method.
16. A 3 -phase, $400-\mathrm{V}, 50-\mathrm{Hz}$ AC source supplies a 3-phase, delta connected balanced load $(3+j 4) \Omega$. Draw neat diagram and calculate (i) phase current, (ii) line current, (iii) power in each phase and (iv) total power drawn form the supply.
17. (a) Define coefficient of coupling.
(b) Derive the e.m.f. equation of a single-phase transformer.
18. With neat diagrams, explain the principle of operation of DC servo motor.

