C14-EC-306

4242
 BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH/APRIL-2021
 DECE - THIRD SEMESTER EXAMINATION
 ELECTRICAL TECHNOLOGY

Time : 3 hours]
[Total Marks : 80

PART—A

$4 \times 5=20$

Instructions: (1) Answer any five questions.
(2) Each question carries four marks.
(3) Answers should be brief and straight to the point and should not exceed five simple sentences.

1. State the condition for resonance in RLC Circuits.
2. A pure inductance coil having an inductance of 8 H is connected in series with a capacitor of $50 \mu \mathrm{~F}$ capacitance across 230 V 50 Hz . Find the net reactance.
3. State Faraday's laws of electromagnetic induction.
4. What is need for a Starter?
5. Define a power plant.
6. Write the e.m.f. equation of a Transformer.
7. What are the different losses of a Transformer?
8. Define coefficient of coupling.
9. Define synchronous speed of an Induction Motor.
10. What are the applications of Servo Motor?

Instructions: (1) Answer any four questions.
(2) Each question carries fifteen marks.
(3) Answers should be comprehensive and criteria for valuation is the content but not the length of the answer.
11. The two given vectors are $Z_{1}=5-j 2$ and $Z_{2}=3-j 8$. Find $Z_{1}+Z_{2}$ and $Z_{1}-Z_{2}$.
12. In a series RLC circuit having resistance of 12Ω, inductance $0 \cdot 15 \mathrm{H}$ and capacitance of $100 \mu \mathrm{~F}$ with a 100 V 50 Hz supply. Calculate the value of impedance current, power factor and power consumed.
13. Explain the dynamically and statically induced EMF.
14. Explain the characteristics of DC Shut motor.
15. A symmetrical $3 \phi 400 \mathrm{~V}$ system supplied a balanced delta connected load, the current in each branch circuit is 30 A and phase angle is 30° lag. Find (i) The line current and (ii) The total power consumed.
16. Explain the construction and working of Auto Transformer.
17. With a neat waveform and vector diagram explain the principle of production of rotating magnetic field in 3ϕ induction machines.
18. Explain the working of an Alternator.

