C14-EC/CHPC/PCT-401

4455
 BOARD DIPLOMA EXAMINATION, (C-14) JUNE-2019
 DECE-FOURTH SEMESTER EXAMINATION
 ENGINEERING MATHEMATICS-III

Time : 3 hours]

[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0$.
2. Solve $\left(D^{3}+D^{2}+4 D+4\right) y=0$, where $D \equiv \frac{d}{d x}$.
3. Find the particular integral of $\left(D^{2}+5 D+6\right) y=e^{x}$, where $D \equiv \frac{d}{d x}$.
4. Find the Laplace transform of $t^{3}+5 \cos t$.
5. Find the Laplace transform of $t^{3} e^{-3 t}$.
6. Find the inverse Laplace transform of $\frac{s^{2}-3 s+4}{s^{3}}$.
7. Find the inverse Laplace transform of $\frac{s+2}{(s+1)(s-2)}$.
8. Define Fourier series of a function $f(x)$ in the interval $(0,2 \pi)$
9. Find the value of a_{0} in the Fourier cosine series of $f(x)=1$ in the interval (0,1).
10. A bag contains 9 balls of which 4 are red, 3 are blue and 2 are yellow. The balls are similar in shape and size. A ball is drawn at random from the bag. Find the probability that the ball will be either red or blue.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve $\left(D^{2}+36\right) y=\sin ^{2} x$, where $D \equiv \frac{d}{d x}$. (b) Solve $\left(D^{2}-D-2\right) y=3 e^{2 x}$, where $D \equiv \frac{d}{d x}$.
12. Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$, where $D \equiv \frac{d}{d x}$.
13. (a) Find the Laplace transform of $\frac{1-e^{t}}{t}$.
(b) If $L\left\{\frac{\sin t}{t}\right\}=\tan ^{-1} \frac{1}{s}$, find $L\left\{e^{t} \frac{\sin 3 t}{t}\right\}$
14. (a) Show that $L^{-1}\left\{\frac{1}{s\left(s^{2}+a^{2}\right)}\right\}=\frac{1-\cos a t}{a^{2}}$.
(b) Using Laplace transform method, solve $\mathrm{y}^{\prime \prime}+\mathrm{y}=\mathrm{t}$, if $y(0)=1$ and $y^{\prime}(0)=0$.
15. Expand $f(x)=x-x^{2},-\pi<x<\pi$ in a Fourier series and hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{12}$.
[Contd....
16. Obtain the Fourier series for $f(x)=\frac{\pi-x}{2}$ in $0 \leq x \leq 2$.
17. Two students A and B appeared in an examination. The probability that A will qualify the examination is 0.05 , B will qualify the examination is $0 \cdot 10$ and that both A and B will qualify the examination is $0 \cdot 02$. Find the probability that (a) both A and B will not qualify the examination, (b) at least one of them will not qualify the examination and (c) only one of them will qualify the examination.
18. (a) If A and B are independent events with $P(A)=0.2$ and $P(B)=0 \cdot 5$, then find (i) $P(B / A)$, (ii) $P(A / B)$ and (iii) $P(A \cap B)$.
(b) In a certain college, 25% of the boys and 10% of the girls are studying Mathematics. The girls constitute 60\% of the student strength. If a student at random is found studying Mathematics, find the probability that the student is a girl.

