

C14-Ec-403

4457

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016 DECE-FOURTH SEMESTER EXAMINATION

 NETWORK ANALYSISTime : 3 hours]

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define Ohm's law. State the limitations of Ohm's law.
2. What is the voltage across 10Ω resistor in the circuit shown below?

3. State Thevenin's theorem.
4. State the maximum power transfer theorem for DC source.
5. Define the following :
(a) Branch
(b) Node
(c) Loop
[Contd...
6. Draw the dual of the network shown below :

7. Define time constant of $R-L$ circuit.
8. Give the conditions for symmetry and reciprocity in terms of Z-parameters.
9. Define characteristic impedance and propagation constant.
10. List the applications of equalizer.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. What is the voltage across A and B in the circuit shown below?

12. Determine the current through 5 ohm resistor in the circuit shown below using Norton's theorem across terminals $A B$:

[Contd...
13. In the single current source circuit shown below, find the voltage V_{x}, interchange the current source and the resulting voltage V_{x}. Is the reciprocity theorem verified?

14. In the network shown in the figure below, write the mesh current equations and arrange them in matrix form, and find the current I_{1} :

15. Determine the node voltages V_{1} and V_{2} in the network shown below, using node voltage method :

16. Explain the transient analysis of series $R-C$ circuit for DC excitation.
17. Find the Z-parameters for the following circuit :

18. Derive an expression for the characteristic impedance of a symmetrical π-network.

