

C14-EC-403

4457

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2017
 DECE-FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS
Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Explain dot rule for coupled circuits.
2. Determine the equivalent voltage source for the current souce shown in the figure below :

3. Give the mathematical equations for star to delta circuit transformation.
4. Define Thevenin's theorem.
5. Define branch, junction and loop.
[Contd...
6. Draw the dual of the given network :

7. Define the terms transient and steady state.
8. Give the conditions for reciprocity in terms of z, y and h parameters.
9. Draw the characteristic curves for low-pass filter and high-pass filter.
10. List the applications of equalizer circuit.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State Kirchhoff's current law and Kirchhoff's voltage law.
(b) Find the current through and voltage across each resistor in the given circuit :

[Contd...
12. For the circuit shown below, find the current across 2 ohms resistor using superposition theorem :

13. Find the Norton's equivalent circuit at terminals $A B$ of the network shown in the figure below :

14. For the circuit shown below, find the currents i_{1}, i_{2} using mesh current analysis :

15. In the given network, find the voltage at node 2 using node voltage analysis :

[Contd...
16. Explain the transient analysis of series $R C$ circuit for $D C$ excitation.
17. (a) Find the z parameters of the given π network :

(b) Find h parameters of the given network :

18. Design a low-pass T-section filter having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 600Ω.

