C14-EC-403

4457

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH / APRIL-2018
 DECE—FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Distinguish between Active and Passive elements.
2. State Kirchoff's voltage law and Kirchhoff's current law.
3. Define branch, node and loop of a network.
4. Write the mesh current equations of the network given below.

5. Define Thevenin's theorem.
6. Give the transformation formulas from Star to Delta.
7. Define the time constant of an RL circuit.
8. Define the Z-parameters of a two-port network.
9. Define the term characteristic impedance.
10. List the applications of equalizer.

PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. (a) In the following circuit find $V_{A B}, V_{B C}$ and $V_{C D}$:

(b) Determine the currents I_{1}, I_{2} and I_{3} using KCL:

12. Determine the power absorbed by 5Ω resistor using mesh analysis.

13. Find the currents I_{A}, I_{B}, I_{C} using nodal analysis for the circuit shown below :

14. Obtain the Thevenin's equivalent circuit between terminals $A B$

15. Determine the current I through $(3+j 4) \Omega$ using superposition theorem.

16. Derive the expressions for Voltages across R and L for $t>0$ The swich is closed at $t=0$

17. Find the Y parameters for the network shown below:

18. Derive the expression for characteristic impedance of a symmetrical T-Network.

