

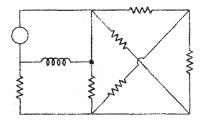
C14-EC-403

4457

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017

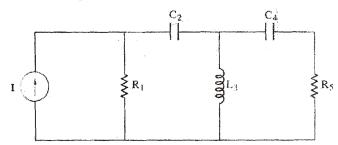
DECE—FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS


Time: 3 hours [Total Marks: 80

PART—A

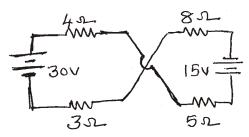
 $3 \times 10 = 30$


Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define mutual inductance and coefficient of coupling.
- 2. Define Ohm's law and give its limitations.
- **3.** Determine the number of mesh equations required for solving the network given below:

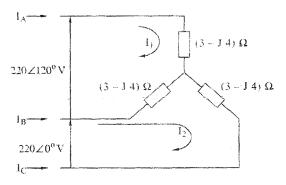
/4457 1 [Contd...
www.ManaResults.co.in

4. Draw the dual of given network:

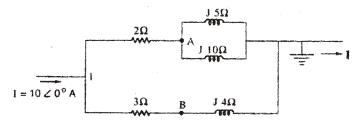


- **5.** Define reciprocity theorem.
- **6.** Give the transformation formulae from star-to-delta network.
- **7.** Define time constant and give its formula for *R-C* network.
- **8.** Define the h-parameters of a two-port network.
- **9.** Define the term 'propagation constant'.
- 10. Define pass band, stop band and cut-off frequency of a filter.

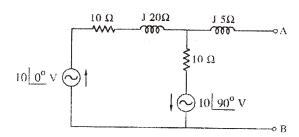
PART—B 10×5=50


Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Explain about ideal voltage source and ideal current source.
 - (b) Find the voltage drop across 5 resistor in the given network: 5

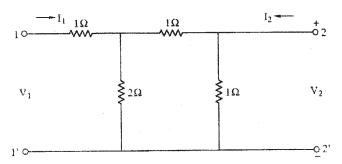


/4457 2 [Contd...
www.ManaResults.co.in


12. Find the currents I_A , I_B and I_C using mesh analysis :

13. Find the voltage between A and $B(V_{AB})$ using nodal analysis:

14. Obtain the Norton equivalent network between AB:



15. Find the current I in 4 resistor :

16. A series R-C circuit consists of R 5 k , C 20 F has a constant voltage V 100 V applied at t 0. Find the equations of i, V_R and V_C in this circuit (assuming initial charging on capacitor is zero).

17. Determine the transmission parameters of the network shown below :

18. Design a constant *K*-type low-pass filters of both *T* and types with cut-off frequency of 2 kHz and terminating resistance of 600 . 5+5=10

 $\star\star\star$