

с14-ес-606

4740

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2018

DECE—SIXTH SEMESTER EXAMINATION

DIGITAL CIRCUIT DESIGN THROUGH VERILOG HDL

Time : 3 hours]

[Total Marks : 80

PART—A 3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** What is timing simulation?
- **2.** What is design entry?
- 3. What is planning placement and routing (PPR)?
- **4.** Write the features of Verilog HDL
- **5.** Write any three differences between an instantiation and inference of a component.
- 6. Define expressions, operators and operands.
- 7. List the advantages of hierarchical modelling.

/4740

[Contd...

www.manaresults.co.in

- 8. Distinguish between sequential and parallel blocks.
- **9.** Write Verilog code for 2-bit comparator using dataflow modelling.
- **10.** Write Verilog code for D flip-flop with synchronous clock and reset using dataflow modelling.

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. Explain VLSI design flow.
- **12.** Explain four levels of abstraction to represent the internals of a module.
- **13.** Explain about system tasks and compiler directives.

14.	(a)	Explain conditional statements.	5
	(b)	Explain blocking and non-blocking procedural assignments with examples.	5
15.	Design logic circuits for half subtractor and full subtractor using structural modelling.		
16.	(a)	Design RS flip-flip with synchronous clock and reset using behavioural modelling.	5
	(b)	Design 3 to 8 decoder using behavioural modelling.	5
17	Doc	sign SISO shift registers using behavioural and detaflow	

- **17.** Design SISO shift registers using behavioural and dataflow modelling.
- 18. (a) Write stimulus module for 4 : 1 multiplexer.
 (b) Write stimulus module for JK flip-flop.
 5

2

/4740

*

AA8—PDF

www.manaresults.co.in