

C14-EE/CHPP-102

4041

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2015 DEEE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. Resolve

$$\frac{1}{(x + 5)(x + 7)}$$

into partial fractions.

2. If

verify that $(A ext{ } B)^T ext{ } A^T ext{ } B^T$.

3. Show that

$$\begin{vmatrix}
b & c & a & a \\
b & c & a & b \\
c & c & a & b
\end{vmatrix}$$
4abc

/**4041** 1 [Contd...

- **4.** Prove that $\tan (45 \ A) \tan (45 \ A) \ 1$.
- **5.** If $\sin x \sin (60 \quad x)$ then show that $\sin (60 \quad x) = \frac{1}{4} \sin 3x$.
- **6.** Find the modulus of $\frac{3}{5}$ $\frac{4i}{7i}$.
- **7.** Find the equation of the circle with (2, 3) and (6, 9) as ends of a diameter.
- **8.** Prove that

$$\lim_{0} \frac{1 - \cos}{2} = \frac{1}{2}$$

- 9. Find the equation of the straight line passing through the point (2, -5) and perpendicular to the line 7x 2y 1 0.
- **10.** Find $\frac{dy}{dx}$, if $y \sin^2(2x 3)$.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve the equations x y z 6, $x \ 2y \ 3z \ 14,$ x 4y 9z 36 by using matrix inversion method.
 - (b) Show that

$$\begin{vmatrix} a & b & 2c & a & b \\ c & b & c & 2a & b \\ c & a & c & a & 2b \end{vmatrix} = 2(a b c)^3$$

12. (a) If A B C 180 prove that

 $\sin 2A \quad \sin 2B \quad \sin 2C \quad 4 \sin A \sin B \sin C$

(b) Prove that

$$\tan^{-1}\frac{1}{7}$$
 $\tan^{-1}\frac{1}{13}$ $\tan^{-1}\frac{2}{9}$

/4041

*

[Contd...

- **13.** (a) Solve: sin 6 cos 2 sin 5 cos.
 - (b) In a triangle ABC, prove that

$$\cot A \quad \cot B \quad \cot C \quad \frac{a^2 \quad b^2 \quad c^2}{4}$$

- **14.** (a) Find the equation of the ellipse which passes through the points (2, 2) and (3, 1) with axes as coordinate axes.
 - (b) Find the coordinates of the centre, vertex, eccentricity, foci and LLR of the hyperbola $9x^2$ $16y^2$ 144.
- **15.** (a) If $X t^4 5$, $y t^7 6$ find $\frac{d^2y}{dx^2}$ at $t \frac{1}{2}$.
 - (b) If $y = \tan^{-1}(\cos\sqrt{x})$ find $\frac{dy}{dx}$.
- **16.** (a) If $y = \sqrt{x} = \sqrt{x} = \sqrt{x} = \sqrt{x}$, show that $\frac{dy}{dx} = \frac{1}{2y-1}$.
 - (b) If $u \sin^{-1} \frac{x^2 + y^2}{x + y}$ prove that $X \frac{u}{x} + Y \frac{u}{y} = \tan u$.
- 17. (a) Find the angle between the curves $y^2 4x$ and $x^2 4y$.
 - (b) The volume of the cube increases at the rate of 0.3 cubic cm/sec. Find the rate at which the surface area changes when the edge is 20 cm.
- **18.** (a) Find the maximum and minimum values of the function X^3 $6X^2$ 9X 1
 - A 6A 9A 1
 - (b) The circumference of a circle is measured as 28 cm and with an error of 0.01 cm. Find the approximate percentage error in the area of the circle.

* * *